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Abstract: We study observables in a conformal field theory which are very closely related

to the ones used to describe hadronic events at colliders. We focus on the correlation

functions of the energies deposited on calorimeters placed at a large distance from the

collision. We consider initial states produced by an operator insertion and we study some

general properties of the energy correlation functions for conformal field theories. We

argue that the small angle singularities of energy correlation functions are controlled by

the twist of non-local light-ray operators with a definite spin. We relate the charge two

point function to a particular moment of the parton distribution functions appearing in

deep inelastic scattering. The one point energy correlation functions are characterized

by a few numbers. For N = 1 superconformal theories the one point function for states

created by the R-current or the stress tensor are determined by the two parameters a and c

characterizing the conformal anomaly. Demanding that the measured energies are positive

we get bounds on a/c. We also give a prescription for computing the energy and charge

correlation functions in theories that have a gravity dual. The prescription amounts to

probing the falling string state as it crosses the AdS horizon with gravitational shock waves.

In the leading, two derivative, gravity approximation the energy is uniformly distributed

on the sphere at infinity, with no fluctuations. We compute the stringy corrections and

we show that they lead to small, non-gaussian, fluctuations in the energy distribution.

Corrections to the one point functions or antenna patterns are related to higher derivative

corrections in the bulk.
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Figure 1: A localized excitation is produced in a conformal field theory and its decay products

are measured by calorimeters sitting far away.

1. Introduction

In this paper we consider conformal field theories and we study physical processes that are

closely related to the ones studied at particle colliders. In some sense we will be studying

“conformal collider physics”. We consider an external perturbation that is localized in

space and time near t ∼ ~x ∼ 0. This external perturbation couples to some operator O of

the conformal field theory and produces a localized excitation in the conformal field theory.

This excitation then grows in size and propagates outwards. We want to study the prop-

erties of the state that is produced. For this purpose we consider idealized “calorimeters”

that measure the total flux of energy per unit angle far away from the region where the

localized perturbation was concentrated. As a particular example one could have in mind a

real world process e+e− → γ∗ →hadrons,1 where we produce hadrons via an intermediate

off shell photon. We can treat the process to lowest order in the electromagnetic coupling

constant and to all orders in the strong coupling constant. The QCD computation reduces

to studying the state created on the QCD vacuum by the electromagnetic current jµ
em.

From the point of view of QCD this current is simply a global symmetry. In this case

the theory is not conformal, but at high enough energies we can approximate the process

as a conformal one to the extent that we can ignore the running of the coupling and the

details of the hadronization process. In this paper we will analyze similar processes but in

conformal field theories.

Our goal is to describe features of the produced state. For example, at weak coupling

we expect to see a certain number of fairly well defined jets. At strong coupling we expect

to see a more spherically symmetric distribution [2 – 4]. We need suitably inclusive variables

which are IR finite. In QCD this is commonly done using inclusive jet observables [5] ,

see [6] for a review. In this paper we study a particularly simple set of inclusive observables

which are the energy correlation functions, originally introduced in [7]. They are defined

as follows. We place calorimeters at angles θ1, . . . , θn and we measure the total energy per

unit angle deposited at each of these angles. We multiply all these energies together and

compute the average over all events. These are also inclusive, IR finite observables which

1For early work on the applications of scale invariance to strong interactions and, in particular, e+e−

collisions, see [1].
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one could use to study properties of the produced state. Energy correlation functions for

hadronic final states have been measured experimentally and they are one of the ways of

making precise determinations of αs (see [8] for example).

A nice feature of energy correlation functions is that they are defined in terms of

correlation functions of local gauge invariant operators. They are given in terms of the

stress tensor operator [9]. More precisely, consider the expression for the integrated energy

flux per unit angle at a large sphere of radius r

E(θ) = lim
r→∞

r2

∫ ∞

−∞
dt niT 0

i(t, r~n
i) (1.1)

where ni is a unit vector in R3 and it specifies the point on the S2 at infinity where

we have our “calorimeter”. If we integrate this quantity over all angles we get the total

energy flux which is equal to the energy deposited by the operator insertion. Energy

correlation functions are defined as the quantum expectation value of a product of energy

flux operators on the state produced by the localized operator insertion

〈E(θ1) · · · E(θn)〉 ≡ 〈0|O†E(θ1) · · · E(θn)O|0〉
〈0|O†O|0〉 (1.2)

where O is the operator creating the localized perturbation. Note that the operators

are ordered as written, they are not time ordered. Notice, also, that the expectation values

in the left hand side of (1.2) are defined on the particular state created by the operator

O and they are not vacuum expectation values. The energy operators are very far away

from each other and they commute with each other. This will become more clear below

when we think of the operators as acting on null outgoing infinity, sometimes called J +.

Of course, we usually think of the energy deposited at various calorimeters as commuting

observables, since we measure them simultaneously. Notice that when we compute an n

point function we place calorimeters at n points but we also allow energy to go through

the regions where we have not placed calorimeters.

In this paper we will assume that we have a conformal field theory. There are several

motivations for doing so. First, the conformal case is simpler because it has more symmetry

and, at the same time, it allows us to consider theories that are strongly coupled. There

are some interesting statements that can be made using conformal symmetry. Second, we

could have a theory for new physics beyond the Standard Model which is conformal, as in

the Randall-Sundrum II [10] or the unparticle [11] scenarios, or approximately conformal,

as in the “hidden valley” scenario [12]. One would like to describe the events in these

theories. In order for energy correlations to be observable to us we need some way to

transfer the energy from the new sector back to the standard model, as in [12]. Depending

on the details, this conformal breaking and conversion process might or might not destroy

the energy correlations one computes in the conformal theory. We will not discuss this

problem here. A similar issue arises in QCD. For a sample of references on the influence

of hadronization on energy correlations for QCD see [7, 13]. The final motivation is a

more theoretical one, which is to understand better the AdS/CFT correspondence [14 –

16]. Energy correlations are natural observables on the field theory side which one would
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like to understand using gravity and string theory in AdS. We will see that on the gravity

side, energy correlations translate into the probing of a string state, created by the localized

perturbation, with a gravitational shock wave as it falls into the AdS horizon. Thus, the

problem becomes a high energy scattering calculation in the bulk.

This paper is organized as follows. In section two we make some general remarks on

energy correlation functions in conformal field theories. By making conformal transforma-

tions we can picture the problem in various ways. We also make some remarks on the small

angle behavior of the correlators when two of the energy operators come close together. We

point out that this small angle behavior can be analyzed by means of an operator product

expansion which involves non-local light-ray operators which are closely related to the ones

that appear in the discussion of deep inelastic scattering. We also relate a moment of

the deep inelastic cross section, or parton distribution function, to a particular energy two

point correlation function. Finally, we consider the general form of the energy one point

function 〈E(θ)〉 and relate it to vacuum expectation values of three point functions.

In section three we study conformal field theories that have a gravity (or string theory)

dual and we describe a prescription for computing the energy correlation functions. The

procedure amounts to taking a “snapshot” of the wavefunction of the state produced by

the operator insertion. In the gravity approximation we find that the energy correlation

functions are perfectly spherically symmetric as was expected from the very rapid frag-

mentation that one expects at strong coupling. This phenomenon was originally analyzed

in deep inelastic processes in [2] (see also [4] ).

In section four we discuss the leading stringy corrections. They amount to small

fluctuations in the energy distribution of order 1/
√

λ. We also consider these corrections

for charge correlations which have interesting features in the case that the charges are

carried by flavor symmetries. Finally, we study the regime where two of the angles come

close together and find that the result is determined by the energy of peculiar non-local

string states which are dual to the light-ray operators that appeared in the general field

theory discussion. These operators have a high conformal dimension at strong coupling

going like ∆ ∼ λ1/4.

In section five we present a summary, conclusions and a discussion of open problems.

2. Energy correlations in conformal field theories

In this section we study energy correlation functions in general conformal field theories.

The discussion in this section is valid for any value of the coupling.

2.1 Energy correlations in various coordinates systems

The goal of this subsection is to think about energy correlations in various coordinate sys-

tems in order to make manifest its various properties and also in order to simplify later

computations.

It is interesting to take a step back and think about the energy density as follows. For

any generator, G, of the conformal group there is an associated conformal killing vector

ζµ
G (xµ → xµ + ζµ

G). The associated conserved charge can be written as the integral of
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a conserved current, constructed by contracting ζµ
G with the stress tensor, over a spatial

hypersurface

QG =

∫

Σ3

∗4jG , jµ
G ≡ Tµνζν

G (2.1)

where the normalization of the stress tensor is chosen so that Tµν = − 2√
g

δS
δgµν . This ex-

pression of the charges is covariant under conformal transformations. It is also invariant

under Weyl transformations of the four dimensional metric2 gµν → Ω2gµν , Tµν → Ω−2Tµν .

It is convenient to understand clearly the symmetries of the problem. We are interested

in measuring the flux of energy at large distances. Thus, we focus our attention on the

boundary of Minkowski space R1,3. The conformal generators that leave the boundary

fixed are the dilatation and the Poincare generators, including the translations Pµ and

the SO(1, 3) lorentz transformations. In other words, we have the whole conformal group

except the special conformal transformations. In order to see that the large r limit in (1.1)

is well defined, and also to gain some more insight into the problem, it is convenient to

perform a conformal transformation from the original coordinates xµ to new coordinates

yµ. The new coordinates are such that the future boundary of the original Minkowski space

is mapped to the null surface y+ = 0. The explicit change of coordinates is3

y+ = − 1

x+
, y− = x− − x2

1 + x2
2

x+
, y1 =

x1

x+
, y2 =

x2

x+
(2.2)

where y± = y0 ± y3, and similarly for x±. The inverse change of coordinates is given by

the same expressions with x ↔ y. The advantage of the new coordinates is that now the

energy is expressed in terms of an integral over the surface at y+ = 0 and we do not have to

take any limit, such as the large r limit in (1.1). Actually, to be more precise, the surface

y+ = 0 corresponds to the future lightlike boundary of Minkowski space. The energy

correlation function (1.1) involves an integral over the past and the future boundaries of

Minkowski space. However, in the physical situation we are interested in, where we have

the vacuum in the past, there is no contribution from the past light-like boundary and we

can focus only on the future boundary. Of course, one could also directly define the energy

flux operator in terms of an integral over only the future boundary.

In order to switch between different coordinate systems it is convenient to think about

R1,3 as follows. We introduce the six coordinates ZM subject to the identification ZM ∼
λZM and the constraint4

−
(

Z−1
)2 −

(

Z0
)2

+
(

Z1
)2

+
(

Z2
)2

+
(

Z3
)2

+
(

Z4
)2

= 0 (2.3)

The usual coordinates on R1,3 are projective coordinates xµ = Zµ

Z−1+Z4 , µ = 0, 1, 2, 3.

The metric induced on this surface, (2.3) , by the R2,4 metric is fixed up to an overall

x-dependent factor. We can choose a metric by choosing a “gauge condition” such as

2We are ignoring the conformal anomaly since it only contributes as a c-number, independent of the

quantum state of the field theory.
3This type of coordinates have also been studied in [80].
4Note that Z−1 is the “minus one” component of the vector Z and it does not denote the inverse of Z.

Hopefully, this notation will not cause confusion.
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Z−1 +Z4 = 1. Different “gauge conditions” lead to metrics that differ by a Weyl rescaling.

The coordinates yµ in (2.2) correspond to the choice

y0 = − Z−1

Z0 + Z3
, y3 = − Z4

Z0 + Z3
, y1 =

Z1

Z0 + Z3
, y2 =

Z2

Z0 + Z3
(2.4)

In fact, using (2.4) and (2.2) we can easily go between the two sets of coordinates.

We have dxµdxµ =
dyµdyµ

(y+)2
. We also clearly see that (2.2) amounts to a π

2 rotation in the

[-1,0] plane and in the [4,3] plane of R2,4, which is an element of the conformal group. The

boundary of Minkowski space is the null surface given by Z−1 + Z4 = 0. We can think of

the various generators of the conformal group as the antisymmetric matrices M [MN ] which

generate the transformations δZN = M [NM ]ZM .5 Defining Z± = Z−1 ± Z4, we can see

that all the generators that leave the surface Z+ = 0 invariant are all the ones with no +

index plus the generator M [+−]. In this language the four momentum generators in the

x coordinates correspond to M [−µ], µ = 0, 1, 2, 3, 4. These generators have a particularly

simple form at Z+ = 0

Pµ ∼ Zµ
∂

∂Z− − Z−
∂

∂Zµ
−→ Pµ|Z+=0 ∼ Zµ

∂

∂Z− (2.5)

(note that Z− = −Z+/2). Since the Killing vectors are all proportional to each other,

then all four generators involve a single component of the stress energy tensor. Using (2.1)

, (2.4) and (2.5) we can write

P 0
x + P 3

x =

∫

dy1dy2 E(y1, y2)

P 0
x − P 3

x =

∫

dy1dy2 (y2
1 + y2

2)E(y1, y2)

P 1
x =

∫

dy1dy2 y1E(y1, y2)

P 2
x =

∫

dy1dy2 y2E(y1, y2)E(y1, y2) ≡ 2

∫ ∞

−∞
dy−T−−(y−, y+ = 0, y1, y2) (2.6)

We see that they are all determined by T−− thanks to the simple form of the generators

at Z+ = 0 (2.5). The conclusion is that we are computing correlation functions of T−− and

these determine all the components of the energy and the momentum. These expression

have the advantage that no limit is involved but they have the disadvantage that the SO(3)

rotation symmetry is not manifest. Since no limit is involved, it is clear that the expectation

values of (2.6) will be finite. In fact, we are considering an external operator insertion which

is localized in x space. This implies, in particular, that it is localized near x+ ∼ 0 so that

it is far enough from y+ = 0 which is the point where we insert the operators (2.6).

We should note that the dilatation symmetry of the original coordinates xµ → λxµ

becomes a boost in the y+, y− plane in the y coordinates (2.2). Similarly the dilatation

transformation in the y variables becomes a boost in the x± plane.

5This SO(2, 4) manifestly invariant formalsim has also been studied recently in [78].
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Figure 2: (a) Penrose diagram of flat Minkowski space. The doted line is a surface at constant r

where we measure the energy flux. In the large r limit this becomes the light-like boundary, J +,

of Minkowski space. We consider only the future part of the boundary. The semicircle represents

a localized operator insertion. In (b) we extend the coordinates to the conformal completion of

Minkowski space, which gives us S3 × R. The future boundary of the original space is simply the

light-cone of the point at spatial infinity, i0.

An alternative point of view is the following. We write the original coordinates as

ds2 = −dt2 + dr2 + r2dΩ2
2 = r2

[−dt2 + dr2

r2
+ dΩ2

2

]

(2.7)

The original metric and the bracketed metric in (2.7) differ by a Weyl transformation, but

such a transformation leaves the physics of the CFT invariant. So we can view our CFT

as defined on an extremal black hole: AdS2 ×S2. Then, the boundary of Minkowski space

corresponds to the black hole horizon situated at t, r = ∞. We see that we can view our

measurement as one done at the horizon of an extremal black hole. (Of course we can

also consider other coordinates related by Weyl transformations which would suggest other

pictures.) By introducing new coordinates we can write the AdS2 metric in (2.7) as

ds2 =
−dt2 + dr2

r2
=

−dτ2 + dσ2

sin2 σ
, t =

sin τ

cos τ + cos σ
, r =

sin σ

cos τ + cos σ
(2.8)

The horizon is at τ+ ≡ τ + σ = π. We also define τ− = τ − σ. We can then write the

generators (2.6) as

P 0 =

∫

dΩ2 E(~n)

P i =

∫

dΩ2 ni E(~n)E(~n) ≡ 2

∫

τ+=π
dτ−

(

cos
τ−

2

)2

Tτ−τ− (2.9)

where ni is a unit vector in R3 and specifies a point on S2. In these coordinates the

SO(3) rotation symmetry is manifest. The fact that the energy flux and the momentum flux

is related to the same operator, T−−, is indeed what we would naively expect in a theory

of massless particles. Namely, if at some point of the sphere we have energy E(θ) then

we have momentum P i = niE(θ). Here we have shown that this also holds for a general

interacting CFT. This is due to the simple form of the Killing vector (2.5) at Z+ = 0.
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Note also that the SO(1, 3) Lorentz symmetry acts on the 2-sphere as the SL(2, C)

group of conformal transformations of S2. Our problem however, does not reduce to

computing correlators in a 2d CFT, since the state we are considering breaks the SL(2, C)

invariance. Under these transformations the operator E transforms as a dimension three

operator. The easiest way to see this it to recall that these SL(2, C) transformations are the

ordinary Lorentz transformations of the original coordinates. In particular we have seen

that x± boosts become dilatation operators in the y variables. In those variables it is clear

that
∫

dy−T−− has dimension three. In particular, one can find the relation between the

operator E(y1, y2) which is defined on a plane to the one on the sphere, E(~n), by following

the coordinate transformation between the plane and the sphere at Z+ = y+ = 0

y1 + iy2 =
sin θeiϕ

(1 + cos θ)
= tan

θ

2
eiϕ (2.10)

dy2
1 + dy2

2 =
dθ2 + sin2 θdϕ2

(1 + cos θ)2
≡ Ω2ds2

S2E(y1, y2) = Ω−3E(~n) = (1 + cos θ)3E(~n)

Physically, we expect that our idealized calorimeters will measure positive energies.

Therefore, the expectation values of E(~n) should be non-negative. In quantum field theory

the expectation value of the stress tensor can be negative in some spacetime region. How-

ever, in our case we are integrating the stress tensor along a light like direction. In a free

field theory one can show that the expectation value

∫

dy−〈T−−〉 ≥ 0 (2.11)

is positive on any state [17].6 We expect that the same should be true in an inter-

acting field theory. In appendix A we recall the argument in free field theories and give

a handwaving argument suggesting that this should be true in general. We will later see

that this condition implies interesting constraints on certain field theory quantities, so it

would be nice to be able to give a more solid argument for the positivity of (2.11) than the

one we give in the appendix.

Notice that the energy flux operators E(θ) commute with each other since operators

at different values of θ are separated by spacelike distances. This is most clear when we

express the operators in terms of the y coordinates as in (2.6). Thus, we can certainly

consider the probability that we measure specific energy functions E(θ) = f(θ) and derive

the probability functional that governs the process. Once can also impose some cuts on the

energy distribution and compute such probabilities. This is done when jet cross sections

are computed, as in [5]. In fact, a specific Feynman diagram with n particles coming out

at angles θ1, . . . , θn gives a contribution to the case where the energy function f(θ) is a

delta function localized at these points. The energy correlation functions we have defined

correspond to average energies where we also allow extra particles that come out and do

not go into the calorimeters we are choosing to focus on.

6The curved space analog of this condition has also been explored for free fields in curved space, since

it plays a role in proving singularity theorems in general relativity.
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(a)
(b)

Figure 3: (a) Singularities in the energy correlation functions arise when we place two calorimeters

very close to each other, at a small angle θ. (b) At the level of Feynman diagrams such singularities

come from colinear radiation.

Besides putting a detector at infinity that measures energy we can also put a detector

that measures charge. In that case we have the charge flux operator

Q(~n) = lim
r→∞

r2

∫ ∞

−∞
dt niji(t, r~n) (2.12)

where j is the current associated to a global U(1) symmetry of the field theory. In the

coordinates (2.2) this becomes Q(y1, y2) =
∫

dy−j−(y−, y+ = 0, y1, y2)). Under SL(2, C)

transformations Q transforms as a field of conformal dimension two. We can similarly

compute energy and charge correlation functions. One can also easily consider non-abelian

global symmetries, and measure the components of various charges, as long as we do not

put two charge insertions at the same point.

Now let us make some remarks on the operator ordering. Since the energy flux op-

erators commute with each other for different θ, then, it does not matter how they are

ordered. However, it is important that they are inserted between the operator, O, that

creates the state and the one annihilating it, as in (1.2). This is the standard ordering

when we compute expectation values. If we use perturbation theory to compute them it

is important that we do not use Feynman propagators since those are for time ordered

situations. However, to do perturbation theory it is very convenient to use Fenymann

propagators. In such a case we have to be careful to remember that we should use the in-

in [18, 19] formalism to evaluate the expectation value. This consists in choosing a contour

that starts with the initial state, goes forward in time to the times where the stress tensor

operators are evaluated and then goes backwards in time.

In a conformal field theory we could also consider the following. Minkwoski space can

be mapped to a finite region of R×S3. In fact, R×S3 can be split into an infinite number

of regions, each of which is mapped to Minkowski space. In that case we can consider one

of the regions as the original Minkowski space and the region immediately to the future as

the region parametrizing the part of the Schwinger-Keldysh contour that goes back in time,

as long as we transform the wavefunction of the in state in the bra appropriately. We found

this picture useful for gaining intuition, but not particularly useful for doing computations.

2.2 Small angle singularities and the operator product expansion

The energy correlation functions develop singularities when two of the energy operators
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are evaluated at very similar angles θ1 ∼ θ2, see 3 a. Such singularities are related to

collinear radiation. To leading order in the gauge theory coupling λ = 4παsN the leading

singularity goes like E(θ1)E(θ2) ∼ Cλ
θ2
12

[7] and it comes from a Feynman diagram like the

one shown in 3 b.

It is clear that such a limit should be characterized by some sort of operator product

expansion. In this section we will make some remarks on the type of operators that appear

in this expansion.

It is simpler to think about the problem in the yµ coordinates introduced in (2.2). We

should, then, compute the OPE of operators of the form

E(y1, y2)E(0, 0) ∼
∫

dy−T−−(y−, y+ = 0, ~y)

∫

dy′−T−−(y′−, y+ = 0,~0) (2.13)

The two operators are sitting at two different points in the transverse directions. We

have set one at zero for convenience and the other at ~y = (y1, y2). Note that the distance

between the two stress tensor insertions is |~y| irrespective of the values of y−, y′−. This

distance is spacelike, so one expects to be able to perform an operator product expansion

when ~y → ~0. Nevertheless, since the two stress tensors are sitting at two very different

points in the y− directions, the operators appearing in the OPE are not local operators.

To leading order the operator is specified by two points that are light-like separated [20].

Such operators are useful for thinking about many high energy processes in QCD [21 – 23].

They are sometimes called “string operators” or “light ray” operators. Various “parton

distribution” functions are defined in terms of matrix elements of such operators, see [22]

for example. It is important to note that these operators are non-local along one light-like

direction but they are perfectly local in all remaining three directions.

In order to characterize these non-local operators it is useful to label them according to

their transformation properties under the conformal group [24] (see [25] for a review). Let

us define the twist generator to be T = ∆−j, where j is the spin (really a boost generator) in

the y+, y− plane.7 More explicitly, the twist transformation is (y+, y−, ~y) → (λ2y+, y−, λ~y).

The spin is the transformation (y+, y−, ~y) → (ηy+, η−1y−, ~y). As it is well known, at zero

coupling, one can consider twist two operators which correspond to primary operators of

higher spin. For example, if we have a scalar field, φ, in the adjoint representation, then

we can schematically define the operators

Uj = Tr

[

φ
←−
∂ −
−→j

φ

]

(2.14)

This is schematic because there is a precise combination of derivatives that makes it a

conformal primary.8 Such conformal primaries exist only if j is even. One is sometimes

interested in extending the definition of such operators to generic, real or complex, values

of j. This problem was considered in detail in [24]. There, it was found that one could

7Note that we define j to be the spin in the y+, y− plane only, not the total spin. The spin in the

transverse directions is another generator which does not appear in the definition of the twist.
8The precise form is Uj =

Pj
k=0

(−1)k

[k!(j−k)!]2
Tr

h

(∂k
−φ)∂j−k

−
φ

i

, where φ is a scalar field [26 – 28].
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start with the operators

U(y−, y′−) = Tr[φ(y−)W (y−, y′−)φ(y′−)] = Tr

[

φ(y−)Pe
R y′

−

y−
A
φ(y′−)

]

(2.15)

where W is an adjoint Wilson line along a null direction. All operators are inserted

at the same values of y+, y1 and y2 (but of course, at different values of y−). We can

also replace φ by a fermion or a gluon operator F−i. Under twist transformations y−

remains invariant but the transverse coordinates are rescaled. In the quantum theory

this scaling transformation mixes the operator (2.15) with operators with other values of

y−, y′−. By thinking about the action of the collinear conformal group (the SL(2, R) set

of transformations of x−) it is possible to diagonalize the action of the twist generator. To

leading order the operators are diagonalized by considering suitable combinations of these

light-ray operators [24, 25]. These operators are labeled by their center of mass momentum

k− along the y− direction and their spin. For our purposes we will be interested only in

operators which are integrated over the the center of mass position along the y− direction

so that they carry zero momentum along y−. In that case the operators of arbitrary spin

constructed from scalar fields can be written as

Uj−1 =

∫ ∞

−∞
dy−

∫ ∞

0

du

uj+1
Tr[φ(y− + u)W (y− + u, y− − u)φ(y− − u)] (2.16)

The subindex of U denotes the total spin and j denotes the spin before we do the y−

integration. This is an expression that makes sense for arbitrary complex values of j. When

j approaches an even integer we find a pole in j coming from a logarithmic divergence in

the integral at small u of the form
∫

du
u . The coefficient of this divergent term contains the

ordinary local operator (2.14) , see [24, 25] for more details. There are similar expressions

for operators constructed from two fermions or two Yang-Mills field strengths. One can

compute the value of the twist for these operators and one finds [24] τ(j) = 2+γ(j), where

γ(j) is the anomalous dimension. One can also consider higher twist operators which

contain more field insertions or extra derivatives with respect to the transverse direction

or y+. In that case, in order to diagonalize the matrix of anomalous dimensions, it is not

enough to give the total spin of the operator. Nevertheless, this can be done, see [25].

The OPE has the schematic form

E(~y)E(~0) ∼
∫

dy−T−−(y−, ~y)

∫

dy′−T−−(y′−, 0) ∼
∑

n

|~y|τn−4 Uj−1,n|j=3 (2.17)

where the sum is over all operators which are local in y+, ~y, but not necessarily local in

y−, which have total spin j−1 = 2, (or j = 3) and twist τn. The spin is determined since the

total spin of the left hand side is one for each of the two energy insertions. Equation (2.17)

is schematic because we have not explicitly indicated the fact that the operators in the

right hand side could carry spin in the transverse directions. A more precise expression

has the form

E(~y)E(~0) ∼∼
∑

k,n

y(i1 · · · yik)|y|τn,k−k−4 U(i1···ik);j−1;n

∣

∣

j=3
(2.18)
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where we have now considered operators that carry spin in the transverse directions,

the indices i1, . . . ik are symmetric and traceless.

Among the operators which have twist two at zeroth order there are only a few that

have j = 3. For example, in QCD there are only two, a bilinear in fermions and a bilinear

in the gluon field strength. Thus, for the given spin we are considering (j = 3) we will have

to diagonalize a finite matrix of anomalous dimensions.

In summary: The small angle behavior of the energy correlation functions is determined

by the spin j = 3 non-local operators that appear in the OPE

〈E(θ1)E(θ2) · · · 〉 ∼
∑

n

|θ12|τn−4〈U3−1,n(θ2) · · · 〉 (2.19)

where the dots denote other energy insertions and |θ| is the angle between the two energy

insertions that are getting close to each other. The sum over n runs over all the higher twist

operators that can appear. We will see that in N = 4 super Yang Mills these operators

develop large anomalous dimensions at strong coupling.

Note that the spin symmetry in the y+, y− plane, that we used to select the operators

that contribute, is the dilatation symmetry of the original Minkowski space. This symmetry

ensures that the energy correlation functions scale properly as we rescale the total energy

(or rescale the variables xµ). In other words, there can be no anomalous dimensions under

total energy rescalings since that would conflict with energy conservation. This is the

physical reason why we are forced to select particular operators in this OPE.

In the case of QCD the small angle behavior of energy correlation functions was com-

puted a long time ago in [29, 30] using a slightly different language. They also needed to

include the effects of the running coupling.

Let us now turn to the case of N = 4 super Yang Mills at weak coupling. The

weak coupling computation of the leading twist anomalous dimensions was done in [31,

32] (see also [33, 34]). We should consider operators which are invariant under all the

symmetries that leave the particular component of the stress tensor in (2.18) invariant.

These include the SO(6) R-symmetry and a parity symmetry. We can classify the operators

according to their transformation properties under the SO(2) group that transforms the

transverse coordinates. All operators are made out of a pair of scalars, fermions or gauge

field strengths. The local operators with zero transverse spin in SO(2) and spin j (j even)

in the +− directions are [31]

Tr

[

φ
←−
∂ −
−→j

φ

]

, T r

[

F−i
←−
∂ −
−→j−2

F−i

]

, T r

[

ψΓ−
←−
∂ −
−→j−1

ψ

]

(2.20)

Supersymmetry relates these three towers of operators. Since supersymmetry carries

spin, the various members of the supermultiplet have different spin. However, the anoma-

lous dimension for all the members of the supermultiplet is the same and it is given by a

function which has the weak coupling expansion [31, 35]

γ(j) =
λ

2π2
[ψ(j − 1) − ψ(1)] + · · · (2.21)
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where ψ = Γ′(z)/Γ(z). This was computed also to two and three loops in [32]. The fact

that γ(j = 2) = 0 corresponds to the fact that the stress tensor is not renormalized.

Since we are interested in operators with a definite spin, we conclude that the three

operators that diagonalize the anomalous dimension matrix are in three different multiplets.

For spin three operators we have the anomalous dimensions [31]

τ1 − 2 = γ(j = 3) , τ2 − 2 = γ(j = 5) , (2.22)

τ3 − 2 = γ(j = 7)τ1 − 2 =
λ

2π2
, τ2 − 2 =

11λ

12π2
, τ3 − 2 =

137λ

120π2

where we just gave the first order expression. We see from (2.22) and (2.21) that all

three anomalous dimensions in (2.22) are positive and τ1 − 2 is the smallest one which will

give us the leading order singularity. However, for weak coupling all three contributions

are similar.

In addition to the operators we discussed, we can also have operators which have non-

zero transverse spin. At twist two, the only one consistent with the symmetries is the spin

two operator

U(il);j = Tr

[

F−(i
←−
∂ −
−→j−2

F−l)

]

(2.23)

where the indices i, l = 1, 2 are symmetrized and traceless. In the the N = 4 theory

these operators are in the same supermultiplet as the ones considered above [36]. For this

reason their anomalous dimension is also given in terms of the same formula

τ̃j − 2 = γ(j + 2) , τ̃3 = 2 +
11λ

12π2
(2.24)

Thus we expect to have a small angle singularity of the form

〈E(~y)E(0) · · · 〉 ∼
3

∑

a=1

|y|−2+(τa−2)ca〈Ua · · · 〉 + y(iyl)|y|−4+(τ̃3−2)c̃〈U(il) · · · 〉 (2.25)

where the operators Ua are the linear combinations that diagonalize the anomalous

dimension matrix for the operators with zero transverse spin. ca and c̃ are coefficients that

can be obtained by performing the operator product expansion explicitly. These constants

are independent of the state for which we compute the energy correlation. Of course, the

terms 〈Ua · · · 〉 and 〈U(il) · · · 〉 do depend on the state on which we compute the energy

correlation function. The coefficients ca, c̃ start at order λ at weak coupling since it is

easy to check explicitly that at tree level there is no contribution to the operator product

expansion of two energy flux operators.

In QCD one can do a similar analysis, including the effects of the beta function, see [30].

In that case, the operator made out from scalars in (2.20) does not contribute.

Having done one OPE, we could also do a further OPE of the resulting operator with

a third energy flux operator. That would give an operator of total spin j− 1 = 3, or j = 4,

and so on. More generally, we can consider the case where n energy operators come close

together. If we keep the ratios of angles between these n points fixed, then the small angle
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behavior is given by the anomalous dimension of the operator of spin j = n+1. The struc-

ture of a jet at weak coupling is largely controlled by these operator product expansions.

Note that, at weak coupling, after we consider the effects of the anomalous dimensions,

the energy correlators have small angle singularities that are integrable. In fact, if we do

the integral over a small angle θ0 of the energy two point function we find schematically

∫

d2θE(θ)E(0) ∼
∫ θ0

0
d2θ

λ

θ2−γ∗λ
∼ (θ0)

γ∗λ (2.26)

where the anomalous twist of the spin three operator is τ − 2 = γ∗λ and γ∗ is a

numerical constant. This expression is schematic because at weak coupling we have to

include all the terms in (2.25). If θ0 is fixed and λ → 0 then we see that the integral gives

a finite answer. This is to be expected since the total integral of one energy insertion over

the whole sphere should give the total energy, independently of λ.9 The fact that we get a

finite contribution from this region is consistent with the idea that the energy is going out

in localized jets. We can also estimate the angular size of jets, by finding a θ0 in such a

way that we get a fixed fraction, f , of the total energy in the jet. This gives an estimate

θ0 ∼ e−c/λ, where c depends on f . This was originally discussed in [5], see also [30] for a

more detailed discussion.

We could also do an OPE of two charge operators, each of which has spin zero, after

we integrate the spin one current over y− (2.12). In this case we get operators with total

spin j − 1 = 0, or j = 1. Some of these have negative anomalous dimensions. In fact, we

expect that charge correlators would be more singular at small angles due to the fact that

a gluon can create a pair of oppositely charged particles fairly easily and there is no reason

that we couldn’t get a divergence when we integrate the charge correlator at small θ.

Finally, we should mention that in QCD the energy-energy correlation two point func-

tion was computed for all angles in,10 [7, 38 – 41]. It was also compared to experiment in [8]

, where it was used as a way to measure αs.

2.3 Energy flux one point functions

In this section we will make some simple and general remarks about the energy flux one

point function

〈E(~n)〉 =
〈0|O†

qE(~n)Oq|0〉
〈0|O†

qOq|0〉
(2.27)

These one point functions are determined up to a few coefficients by Lorentz symmetry,

even in non-conformal theories. Here we will consider these in the CFT context in order

to make contact with other results in conformal field theories.

The energy flux one point function (2.27) amounts to computing a three point function

in the CFT. Three point functions in a generic CFT are determined up to a few numbers

by conformal symmetry [42 – 44].

9Here we are also assuming that the energies are locally positive. For charge correlators we cannot make

the same argument because the charge can be positive or negative.
10The results presented in the following references show some disagreements. For a detailed comparison

between these results see [37]. We thank S. Catani for pointing this out to us.
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Let us start with the case that we create the external state with a scalar operator

with energy q and zero momentum. Strictly speaking such an operator is not a localized

insertion. Thus, more precisely, we will be considering operators of the form

Oq ≡
∫

d4xO(x)e−iqx0 exp

{

−x2
0 + x2

1 + x2
2 + x2

3

σ2

}

, qσ ≫ 1 (2.28)

where the last inequality ensures that the operator is localized, has finite norm and

has four momentum approximately q̃µ = (q,~0) + o(1/σ). In particular we have q0 ∼ q.

Once we know this precise form of the operator we see that we can also write it in other

coordinate systems by performing the suitable conformal transformation and taking into

account the conformal transformation properties of O(x).

In what follows we will consider field theory states produced by scalar operators, O ∼
S, conserved currents O ∼ ǫiji, and the stress tensor, O ∼ ǫijTij . In all cases we consider

states with essentially zero spatial momentum as in (2.28). The case where qµ is a generic

four vector can be obtained by performing a simple boost of the configurations we discuss.

In the case that we insert a scalar operator it is clear by O(3) symmetry that the

energy one point function is constant on the two sphere. In addition the integral over the

angles should give the total energy. Thus, for a scalar operator we have

〈E(~n)〉 =
q

4π
(2.29)

Even though we know the answer already, it is possible to do the calculation explicitly

by writing down the unique general expression for the three point function of two scalars

and the stress tensor [43]. Its normalization is fixed by a Ward identity in terms of the

two point function of the two scalars. This Ward identity is another version of the energy

conservation argument that we used above. Writing down the three point function and

doing the integrals in the limit (1.1) we indeed obtain (2.29). One has to be careful about

the operator ordering. In appendix C we do this explicitly.

We now turn to the case where the external perturbation couples to a conserved current

in the CFT. In that case the operator is given by Oǫ,q ∼ ǫµjµ(q) where ǫµ is a constant

polarization vector. Due to the current conservation condition we can identify ǫµ ∼ ǫµ+λqµ.

So we can choose ǫ to point in the spacelike directions. In this case O(3) symmetry and

the energy conservation condition constrain the form of the one point function to

〈E(~n)〉= 〈0|(ǫ∗ · j†)E(~n)(j · ǫ)|0〉
〈0|(ǫ∗ · j†)(j · ǫ)|0〉 =

q

4π

[

1+a2

( |~ǫ · ~n|2
|~ǫ|2 − 1

3

)]

=
q

4π

[

1+a2

(

cos2 θ− 1

3

)]

(2.30)

where θ is the angle between between the point on the S2, labeled by ni, and the

direction of the polarization vector ǫi.

The fact that we have one free parameter is in agreement with the general analysis of

the three point function of two conserved currents and the stress tensor. In fact in [43] it

was shown that the three point function is determined by conformal symmetry up to two

parameters and one of them is fixed by the Ward identity of the stress tensor.
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Note that a2 in (2.30) obeys a constraint that comes from demanding that the expec-

tation value of the energy E(θ) is positive, see (2.11). This condition leads to the constraint

3 ≥ a2 ≥ −3

2
(2.31)

This one point function was computed for the electromagnetic current in QCD in [7].

To first order in αs the result is

a2 = −3

2
+

9αs

2π
+ · · · (2.32)

To the order written in (2.32) we can approximate the QCD computation by a confor-

mal field theory with the value of the coupling set by the energy of the process αs = αs(|q0|).
In the application to e+e− collisions that produce a gauge boson which in turns couples

to a current the polarization vector of the current depends on the polarization states of

the e+ and e− as well as the type of gauge boson we are considering (γ or Z, Z ′, etc).

In the case that we consider unpolarized electrons we can express the answer in terms of

the angle with respect to the beam axis, θb. (cos θb = ~n.ẑ where ẑ is the beam axis). The

polarization vectors for the current are orthogonal to the beam direction and we should

average over them. After doing this average, we find that (2.30) becomes

〈E(~n)〉 =

∑

s〈0|(ǫ∗s · j†) E(~n) (j · ǫs)|0〉
∑

s〈0|(ǫ∗s · j†) (j · ǫs)|0〉
=

q

4π

[

1 + a2

(

1

2
sin2 θb −

1

3

)]

(2.33)

where we sum over polarization vectors transverse to the beam. For a current that

couples to free fermions we find the familiar (1+cos2 θb) distribution, as we can check from

the leading order QCD result (2.32).

For a current that couples to free complex bosons of charges qb
i and Weyl fermions of

charges qwf
i we get

afree
2 = 3

∑

i

(

qb
i

)2 −
(

qwf
i

)2

∑

i

(

qb
i

)2
+ 2

(

qwf
i

)2 (2.34)

where we sum over both left and right Weyl fermions. Note that the case where we only

have bosons saturates the upper bound in (2.31) and free fermions saturate the lower bound

in (2.31). In fact, going back to (2.33) we see that we get the well known distributions

proportional to sin2 θb or (1 + cos2 θb) for free bosons and fermions respectively.

We can consider a similar problem now in an N = 1 superconformal theory. If the

current is a global symmetry that commutes with supersymmetry (a non-R symmetry)

then one can see that a2 = 0. In a free supersymmetric theory we see from (2.34) that the

bosons and Weyl fermions cancel each other. For an interacting theory this follows from

the fact that such a current is in the same multiplet as a scalar operator, and for a scalar

operator we do not have any arbitrary parameters [45]. Thus the value of a2 is fixed by

superconformal symmetry. However, since we got a2 = 0 in a free theory, we have a2 = 0

for any global symmetry of a SCFT.
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On the other hand we can get a non-zero value of a2 if we consider the R current.11 The

R current is in a different supermultiplet. In fact, it is in a supermultiplet with the stress

tensor. All three point functions among elements of this supermultiplet are determined by

two numbers, c and a [45]. These numbers also characterize the anomalies of the R current,

which are encoded in parts of the jjj and jTT three point functions [46, 45]. They also

contribute to the conformal anomaly on a general background,

T µ
µ =

c

16π2
WµνδσW µνδσ − a

16π2
E , E = RµνδρR

µνδρ − 4RµνRµν + R2 (2.35)

where W is the Weyl tensor and E the Euler density. The c coefficient is the only constant

that appears in the two point functions of the currents and the stress tensor [45]. Thus

c appears in the part of the three point function that is fixed by the Ward identity. The

coefficient a2 is given by a linear combination of a and c. The particular linear combination

is independent of the theory. It is fixed by supersymmetry. We can compute the precise

combination by considering the particular case of free field theories. As we explain in more

detail below we find that

〈E(θ)〉 = 1 + 3
c − a

c

(

cos2 θ − 1

3

)

(2.36)

This formula was obtained as follows. We used that for a free supersymmetric the-

ory with nV vector multiplets and nS chiral multiplets we have 48a = 9nV + nS, and

24c = 3nV + nS [46 – 48]. The vector multiplet has one Weyl fermion of charge 1 and the

scalar multiplet in a free theory has a Weyl fermion of charge −1/3 and a boson of charge

2/3. Then using (2.34) we obtain (2.36). Note that even though we used free field theories

to fix the numerical coefficients, the final result (2.36) is true for a general interacting

N = 1 SCFT.

In N = 4 super Yang Mills a = c and the result for the one point function is spherically

symmetric. Of course this is not a surprise since U(1) subgroups of the SO(6) symmetry

group can also be viewed as global symmetries from the point of view of N = 4 written as an

N = 1 theory. Thus, in N = 4 super Yang mills the result is independent of the coupling.

The positivity constraint (2.31) , together with (2.36) gives 3c
2 ≥ a ≥ 0.

We can also consider the energy one point function in the case that the state is created

by the stress tensor. As above, we take the momentum of the inserted operator in the time

like direction. Then the operator that we are considering is characterized by a symmetric

polarization tensor ǫij which we take to have indices in the purely spacelike directions by

using the conservation equations. Since the stress energy tensor is traceless, we also take

ǫii = 0. By O(3) invariance we see that the most general form of the three point function is

〈E(θ)〉 =
〈0|ǫ∗ijTijE(θ)ǫlkTlk|0〉
〈0|ǫ∗ijTijǫlkTlk|0〉

=
q0

4π

[

1 + t2

(

ǫ∗ijǫilninj

ǫ∗ijǫij
− 1

3

)

+ t4

(

|ǫijninj|2
ǫ∗ijǫij

− 2

15

)]

(2.37)

We see that we have two undetermined coefficients. This agrees with the general

analysis of stress tensor three point functions in [43] , where they found that conformal

11We thank Scott Thomas for pointing this out.
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symmetry determines the three point function of the stress tensor up to three coefficients,

one of which is fixed by a Ward identity. We have chosen the constants in the last two

terms in (2.37) in such a way that the corresponding terms integrate to zero on the sphere.

By demanding that 〈E〉 is positive we get the constraints

(

1 − t2
3
− 2t4

15

)

≥ 0

2

(

1 − t2
3
− 2t4

15

)

+ t2 ≥ 0
3

2

(

1 − t2
3
− 2t4

15

)

+ t2 + t4 ≥ 0 (2.38)

We obtain these constraints by using O(3) invariance in (2.37) to set ~n = ẑ. We then view

the resulting equation as a bilinear form on the space of ǫ’s. This space can be divided into

three orthogonal parts according to their O(2) invariance properties (the spin of ǫ along

the ẑ axis). We have an SO(2) scalar, a vector and a symmetric traceless tensor. On each

of these subspaces we get each of the constraints (2.38). Each of this limits in saturated

in a free theory with no vectors, no fermions or no bosons respectively. The fact that the

first equation is saturated in a theory without vectors is clear. In that case, if we consider

a stress tensor insertion with spin +2 in the ẑ direction we cannot have emission of bosons

or fermions in the ẑ direction due to the orbital angular momentum wavefunctions. It is

also possible to write a general bound on the two coefficients that appear in the conformal

anomaly (2.35) , see appendix C.

In an N = 1 supersymmetric theory we find that

t2 = 6(c − a)/c , t4 = 0 (2.39)

By requiring that (2.37) is positive for all choices of traceless ǫij we find

3

2
c ≥ a ≥ c

2
(2.40)

Of course c > 0 due to the positivity of the two point functions. The bounds are

saturated by free theories with only vector supermultiplets (upper bound) or only chiral

supermultiplets (lower bound). It is interesting that the lower bound that we obtain in this

way is precisely the same as the bound obtained in [49] (see also [50] ) based on causality

for a gravity theory that contains only the Einstein term and a R2 term.12 In the theory

considered in [49] one would also have t4 = 0, though it is not clear whether it corresponds to

any dual quantum field theory. Here we have only used general field theory considerations.

For a non-supersymmetric theory it is also possible to derive a bound from (2.38). As

explained in appendix C we find
31

18
≥ a

c
≥ 1

3
(2.41)

where the lower bound is saturated by a free theory with only scalar bosons and the

upper bound by a free theory with only vectors. Note that the bound in supersymmetric

theories (2.40) is more stringent than in non-supersymmetric theories (2.41). Let us also

12In order to see this one has to set λGB → 9/100 (the bound in [50]) into the expressions for a and c [51]

(see eq. (5.1) of [50]).

– 18 –



add that the results from appendix C also allow us to calculate this bound for N = 2

supersymmetric theories. In this case we can obtain the bound by taking the operator O
to be one of the SU(2) R-symmetry generators and demanding the the energy one point

function is positive. The result is in this case

5

4
≥ a

c
≥ 1

2
(2.42)

This is a smaller window than for the N = 1 case, as expected. The upper bound corre-

sponds to a free theory with vector supermultiplets only while the lower bound corresponds

to a free theory with hypermultiplets only. This agrees with results in [52].

We can make similar remarks for operators that involve charge correlations. For ex-

ample, we could consider a theory with an SU(2) global symmetry and then select one

U(1) ⊂ SU(2) to form the charge flow operator Q that we measure at infinity. We could

consider a charged state state created by the current ǫ ·J+, where the plus indicates that it

carries charge plus one. As in the energy correlations the charge correlations have a form

〈Q(~n)〉 =
〈0|~ǫ∗ · ~J−Q(~n)~ǫ · ~J+|0〉

〈0|~ǫ∗ · ~J−~ǫ · ~J+|0〉
=

1

4π

[

1 + ã2

( |~ǫ · ~n|2
|~ǫ|2 − 1

3

)]

(2.43)

Again, the coefficient ã2 is related to the fact that there are two possible (parity

preserving) structures for the three point function of three currents [42, 43]. One of them is

fixed by the Ward identities in terms of the two point functions, a fact we used in (2.43). We

note that in a supersymmetric theory where these currents are global symmetries ã2 = 0.

One can show this as follows. First note from [45] that there is only one parity preserving

structure for current three point functions in supersymmetric theories. This means that

the value of ã2 is fixed by supersymmetry. One can show that is vanishes by computing it

in a particular theory, such as a free theory or N = 4 super Yang Mills at strong coupling.

There are some cases where there are parity odd structures that can contribute. Such

parity odd parts of three point functions are related to anomalies. For example, in the case

of three currents these are related to the usual anomaly [42]. Consider the case that we

have an external state produced by a current and we measure a charge one point function

distribution. For example, we can consider a U(1) current that has a cubic anomaly. A

concrete example is the R current in superconformal theories. We consider a state obtained

by acting with this current on the vacuum and we measure the charge flux far away. We find

〈Q(~n)〉 =
〈0|~ǫ∗ ·~j† Q(~n)~ǫ ·~j|0〉

〈0|~ǫ∗ ·~j† ~ǫ ·~j|0〉
= i α ǫjlkǫ

∗
jǫlnk ∼ α cos χ (2.44)

Note that this is non-zero only if ǫ is complex. This happens, for example, when we

consider a circularly polarized state. Then χ is the angle between the direction of the spin of

the current and the calorimeter. This leads to a charge flow asymmetry. Such asymmetries

are extensively studied in e+e− collisions that produce a Z boson that then decays. Here

we are pointing out that the charge flow asymmetries are related to the anomaly. Of course

the full electroweak symmetry is not anomalous. But if one focuses only in decays of the

Z into leptons, then the fact that the purely leptonic theory is anomalous leads to the
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charge flow asymmetry. The fact that tree level processes plus unitarity fix the anomaly

was pointed out in [53].

The three point function of two stress tensors and a current has a term that reflects

the mixed gravitational anomaly [54]. Consider the case where the stress tensor creates

the state and we measure the charge distribution of the current that has a mixed anomaly.

The charge distribution has the structure

〈Q(θ)〉 =
〈0|ǫ∗ijTijQ(θ)ǫlkTlk|0〉

〈0|ǫ∗ijTijǫlkTlk|0〉
= iβ

ǫljkǫ
∗
rlǫsjn

rnsnk

|ǫij |2
(2.45)

where β is related to the anomaly coefficient. For a supersymmetric theory, and for Q
given by the R-current, we have that β ∼ (a − c) [46, 54]. Notice that there is, in princi-

ple, another tensor structure consistent with O(3) symmetry that could have contributed

to (2.45), namely ǫljkǫ
∗
rlǫrjn

k. This term is, however, absent from the three point function

once conformal symmetry and the Ward identities are imposed [54]. Thus in a theory with

a gravitational mixed anomaly there is charge asymmetry for the states produced by the

graviton.

2.4 Relation to deep inelastic scattering

In this section we explore the relation between the energy correlation functions and the

deep inelastic scattering cross sections.

The deep inelastic cross section for the scattering of an electron from a proton can be

factorized into the electromagnetic process and the strong interactions process. At lowest

order in the electromagnetic coupling, but exactly in αs, the strong interactions part of the

cross section can be written in terms of the expectation value of two currents in the the state

of the target (which is traditionally a proton, but can be generalized to any other particle)

W̃ µν =

∫

d4yeiqy〈p|Jµ(0)Jν(y)|p〉 = (2.46)

= F̃1(x, q2/p2)

(

gµν − qνqν

q2

)

+
2x

q2
F̃2(x, q2/p2)

(

pµ +
qµ

2x

)(

pν +
qν

2x

)

where x ≡ − q2

2p.q
, q2 > 0

We are imagining that we have a plane wave state in the y coordinates with timelike

momentum p2 < 0. The tensor (2.46) is nonvanishing only if we create a timelike state

s = −(q+p) ≥ 0 with the current. For these values of p and q our definition of W̃ µν , (2.46),

coincides with the ordinary one [55] , which involves a commutator of the currents.

We would like to relate these formulas to the ones appearing in the energy correlators.

Let us consider the charge operator Q evaluated in the y coordinates

Q(~y) =

∫

dy−j−(y+ = 0, y−, ~y) (2.47)

where ~y denotes two transverse dimensions. These two transverse dimensions are

related to the angles on the two sphere by (2.10). In the y coordinates, we can Fourier

– 20 –



transform this operator. We, then, have something similar to the current appearing above,

except that the current in (2.46) is in momentum space also in the y+ direction. Note also

that q− = 0, due to the y− integral in the definition of the charge flux operator Q. Since q−
is zero, we find that q2 = (~q)2 > 0 and independent of q+. However x depends on q+ since

1

x
=

−2p.q

q2
=

−(p + q)2 + p2 + q2

q2
=

4p−q+

q2
+ · · · (2.48)

where the dots indicate terms that are independent of q+. In order to produce the δ(y+)

that is present in the charge flux operator we need to integrate over q+. This integral

translates into an integral over x. The range of integration can be determined by the

condition that −(p + q)2 ≥ 0. Thus we end up integrating between x = 0 and xmax with

1/xmax = 1 + p2/q2. In the limit p2/q2 → 0 we get the usual boundary x = 1.

We then have the following relation between the two quantities

∫

d2~yei~q.~y
p〈Q(~0)Q(~y)〉p =

∫ ∞

−∞

dq+

2π
W−−(q+, q− = 0, ~q; p)

=
(−p−)

4π

∫ xmax

0

dx

x
F2(x, q2/p2) (2.49)

This is a particular moment of the parton distribution functions. More precisely it is

the moment M
(2)
1 . As it is well known, the even moments M2k can be expressed in terms of

the expectation values of local operators with spins j = 2k [55] , via a dispersion relation ar-

gument. In fact, the moments M
(2)
j can also be expressed in terms of the expectation values

of the non-local light-ray operators with spin j for any j, see [56] for a general discussion.

In (2.49) the charge correlation is evaluated on a state with definite momentum in

the y coordinates. This implies, in particular, that the charge two point function is also

translation invariant in the transverse space, p〈Q(~y)Q(y′)〉p = p〈Q(~y − ~y′)Q(0)〉p.
In this article we have been mainly considering states which are in momentum eigen-

states in the x coordinates, related to the y coordinates via (2.2) . This does not lead to

momentum eigenstates in the y coordinates. However, they do have definite momentum in

the p− direction. To the extent that we can neglect other components of the momentum

in the y coordinates we see that the charge correlator has a simple relation to the deep

inelastic scattering amplitude and the ordinary parton distribution functions. In the gen-

eral case we will need to evaluate expectation values of the form 〈p′|JJ |p〉. These require

generalized parton distribution functions [57]. Thus, if we have a state with definite mo-

mentum in the original x-coordinates, we will have a supersposition of momenta in the y

coordinates and the charge two point function will be related to integrals over generalized

parton distribution functions. We will not write a detailed expression here.

Notice that the integral over x is divergent at small x. We think that this is due to the

fact that the integral over ~y is also divergent for the charge correlator since the small angle

singularity is not integrable. This divergence, though, is local in ~q and can probably be ex-

tracted without changing the overall picture. We have not checked this in detail. This prob-

lem is not present if we consider the energy correlation functions and the relation to the deep

inelastic amplitudes probed by gravitons. In that case all quantities are manifestly finite.
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The fact that in our problem we do not have ordinary plane wave wavefunctions in y

has an interesting consequence. It was shown in [2] that, in the gravity regime, the leading

power of q, which governs the short distance behavior in ~y, is controlled by a double trace

operator. We will show below that this contribution is highly suppressed for operators that

have definite momentum in x-space. We expect that this double trace contribution will

also be suppressed at weak coupling when we consider plane wave states in x-space.

Of course, everything we said here can be repeated for the energy correlation function,

except that we should consider a deep inelastic process where we scatter gravitons from

the field theory excitations.

2.5 Energy correlations and the C parameter

Let us make here a side comment on the relation between the energy correlators and other

usually considered event shape variables. Event shape variables are certain functions of

the four momenta of the observed particles which are infrared safe. One concrete example

is the C parameter, defined as [58]

C =
3

2E2

∫

d2Ω1d
2Ω2E(~n1)E(~n2) sin2 θ12 (2.50)

where E is the total energy (and we assume that the total momentum vanishes). We

see that the expectation value of C is given by an integral over the energy two point

correlation function.

On the other hand, it is common to compute the cross section as a function of C (see

for example [59] ). This is just the probability of measuring various values of C, dσ
dC . This

calculation involves more input than the two point correlation function, since we would

need to know all the moments of C, 〈Cn〉, to reconstruct dσ
dC .

The point of this short remark is to stress that, even though the C parameter is

given by a product of energies, the computation of the cross-section as a function of C

involves knowledge of the n point energy-correlation functions. Of course, in practice, dσ
dC

is computed directly rather than going through the energy correlation functions.

3. Energy correlation functions in theories with gravity duals

In this section we consider energy correlation functions in conformal field theories that have

gravity duals. We first start with some general remarks on the energy correlators and the

basic ingredients necessary to calculate them. Then, we will present explicit calculations

for the energy one point functions, which are given in terms of three point functions in

the gravitational theories. Finally, we add a general prescription for computing arbitrary

n point functions.

3.1 General remarks and basic ingredients of the calculation

The general prescription for computing correlation functions of local operators in the CFT

using the gravity dual was derived in [16, 15]. Computations of the expectation values of

the stress tensor for falling objects include [3, 60]. Since energy flux correlation functions
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are given in terms of stress tensor correlators, we simply need to perform the integral over

time and take the limit in (1.1). In order to simplify the computations it is useful to

consider some coordinate changes.

Let us start by writing AdS5 using the coordinates

−(W−1)2 − (W 0)2 + (W 1)2 + (W 2)2 + (W 3)2 + (W 4)2 = −1 (3.1)

The boundary of AdS5 corresponds to the region where W M → ∞. In that regime we

can forget about the −1 in (3.1) and we recover the coordinates ZM that we described

around (2.3). It will be convenient to introduce three possible sets of coordinates which

are natural from different points of view. The first two are

Original :
1

z
= W−1 + W 4 , W µ =

xµ

z
, µ = 0, 1, 2, 3 (3.2)

Easy :
1

y5
≡ W 0 + W 3 , W−1 = −y0 , W 4 = −y3 , W1,2 =

y1,2

y5

Of course the metrics are simply

Original : ds2 =
dx2 + dz2

z2

Easy : ds2 =
−dy+dy− + dy2

1 + dy2
2 + dy2

5

y2
5

(3.3)

It is also convenient to introduce a third set of coordinates, which is defined as follows.

We first choose three coordinates describing the H3 subspace −(W 0)2 + (W 1)2 + (W 2)2 +

(W 3)2 = −r2 for a fixed r2. The two other coordinates are chosen as

W± = W−1 ± W 4 (3.4)

Then r2 = 1 − W+W− and the metric is

Hyperbolic : ds2 = −dW+dW− − 1

4

(W−dW+ + W+dW−)2

1 − W+W− + (1−W+W−)ds2
H3

(3.5)

The advantage of this coordinate system is that it makes the SO(1, 3) symmetry of the

problem manifest. This SO(1, 3) symmetry are the isometries of H3. In addition, the

dilatation symmetry in the original coordinates becomes a boost in the W± plane, which

is also a clear symmetry of the metric in this parametrization.

The surface that is at the boundary of four dimensional Minkowski space can be

extended to the interior in a unique way so that it is invariant under the symmetries that

preserve the boundary of Minkowski space. In fact, this surface is simply given by W+ = 0.

The insertion of the stress tensor operator corresponds to a non-normalizable pertur-

bation of the metric in the the bulk. It will be convenient to derive first the expressions for

the momentum in the y coordinates introduced in (2.2). Since all the generators in (2.6)

are given in terms of the integral of T−−(y′) over a line along y′−, let us compute this first.

We insert T−−(y′) on the boundary at y′+ = 0 and y′1 = y′2 = 0 but at an arbitrary value
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of y′−. We denote the boundary points with primes and the bulk points without primes.

This induces the following fluctuation in the metric of AdS5, gMN → gMN + hMN ,

hMNdxMdxM ∼ (dy+)2
y2
5

[−y+(y− − y′−) + y2
1 + y2

2 + y2
5 + iǫ]4

(3.6)

We can now perform the integral over y′−. We use the formula
∫ ∞

−∞
dy′−

1

[y+y′− + A + iǫ]4
∼ δ(y+)

1

A3
(3.7)

Now, by a simple translation, we can set the energy operator at any other value of

y′1,2. We obtain

hMNdXMdXN ∼ δ(y+)(dy+)2
y2
5

(y2
5 + (y1 − y′1)

2 + (y2 − y′2)
2)3

dy′1dy′2

∼ δ(W+)(dW+)2
y3
5

(y2
5 + (y1 − y′1)

2 + (y2 − y′2)
2)3

dy′1dy′2

∼ δ(W+)(dW+)2
(Z0 + Z3)

(W · Z)3
dZ1dZ2 (3.8)

where in the last line we have represented the boundary coordinates using (2.4) , with

Z+ = 0, in order to get the answer in a form that will make it easy to make coordinate

changes.

For example, if we wish to express the result in the hyperbolic coordinates (3.5) all we

need to do is to express W and Z in terms of such coordinates. Let us define ~n = (n1, n2, n3)

to be a unit vector on a two sphere. On the surface W+ = 0 we can parametrize W 0 =

cosh ζ, Wi = sinh ζni. It is then natural to take boundary coordinates Z0 = 1, Zi = n′i.
We take the limit ζ → ∞ and we then have that

W 0 + W 3 ∼ eζ(1 + n3) ∼ eζ
(

Z0 + Z3
)

, y′1,2 =
Z1,2

Z0 + Z3
=

n′
1,2

(1 + n′
3)

(3.9)

The last equation is simply the change of coordinates (2.10). We then find the following

expression for the generators

E −→ hE
MNdXNdXM ∼ δ(W+)(dW+)2

1

(W 0 − Win′
i)

3
dΩ′

2

P i −→ hP i

MNdXNdXM ∼ δ(W+)(dW+)2n′
i

1

(W 0 − Win′
i)

3
dΩ′

2

E(~n′) −→ h
E(~n′)
MN dXNdXM ∼ δ(W+)(dW+)2

1

(W 0 − Win
′
i)

3
(3.10)

In summary, we have computed the metric fluctuation that corresponds to the inte-

grated insertion of the stress tensor that measures the energy deposited in the idealized

calorimeters that we are placing at infinity at some position ~n′ on the two-sphere. In the

original AdS coordinates the corresponding insertion would be localized on the horizon of

AdS in Poincare coordinates (z = ∞). We found it convenient to express the results in a
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couple of different coordinate systems that are regular at z = ∞ in order avoid having to

take a limit. In these other coordinates we see that we are performing a measurement on

the W+ = 0 surface. This amounts to sampling the wavefunction of the particles in the

bulk at W+ = 0. At W+ = 0 we have an H3 subspace plus the null direction parametrized

by W−. The boundary of H3 corresponds to the two sphere at infinity where we place the

calorimeters.

The form of the equations (3.10) does not make explicit the Lorentz covariance of the

expressions. In order to see this explicitly we can rewrite them as

P ν → hP ν

MNdXNdXM ∼ δ(W+)(dW+)2
Zν

(−W.Z)3
dS0

λZλ

Z0
(3.11)

where we sit at Z+ = 0 and we are integrating over a spacelike surface inside
∑3

µ=0 ZµZµ =

0. The integration surface differential is defined to be such that dSν
λZλ is parallel to Zν .

Therefore the transformation of dS0
λZλ cancels the transformation of Z0.13

In the same way that we have discussed the graviton associated to energy flux mea-

surements we can also consider the U(1) gauge field configurations associated to charge

flow measurements on the boundary theory. The operator that corresponds to putting a

counter at infinity at some specific location and measuring the charge corresponds to the

following bulk gauge field configuration

Q(~n′) → AMdxM ∼ dW+δ(W+) 1
(W 0−W in′

i)
2 (3.12)

Having discussed the properties of the probe gravitons or gauge fields that represent our

measurement, let us now turn to the field in the bulk that describes the state that we insert

with the operator O. We can think of a scalar source to make things simpler, although our

results will be quite general. We are interested in obtaining the field configuration, φ, in

the bulk of AdS5 created by the insertion of the operator O of dimension ∆. If we insert

the operator
∫

d4x′φ0(x
′)O(x′) on the boundary theory, then the bulk field configuration

is given by [16, 15]

φ(x, z) =

∫

d4x′φ0(x
′)

z∆

[(x − x′)2 + z2]∆
= lim

z′→0

∫

d4x′φ0(x
′)

1

(z′)∆(W.W ′)∆

φq(W
+ = 0,W−,W µ) =

∫

d4x
eiq.x′

[

−W−

2 − W 0x′0 + W ix′i − iǫ
]∆

(3.13)

where we have first rewritten the result in a way that allow us to easily change coor-

dinates. In the last line we wrote the expression for the bulk field at W+ = 0 in the case

that φ0(x
′) = eiq.x′

. Notice that we only need the wavefunction at W+ = 0 since that is

where the graviton perturbation is localized. It is not hard to do the integral in (3.13)

explicitly. There is, however, a very simple way to see what the answer should be. We are

creating a state that is a momentum eigenstate. For the moment let us set qµ = (q0,~0).

13This is completely analog to the fact in classical electrodynamics that the power radiated by an accel-

erating charge is a Lorentz scalar.
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The momentum generator corresponds to a bulk isometry generated by a Killing vector

that becomes simpler at W+ = 0,

Pµ
x |W+=0 = −2iW µ∂W− (3.14)

Of course, this is similar to the corresponding boundary statement (2.5). A wave function

that diagonalizes all four of these operators has to be a plane wave in W− and should be

localized in the W µ coordinates. In other words we have

φq(W
+ = 0,W−,W µ) ∼

(

q0
)∆−4

eiq0W−/2δ3( ~W ) (3.15)

where ~W refers to a parametrization of the hyperboloid given by W i with i = 1, 2, 3. In

these coordinates, W 0 is just a function of ~W since WµW µ = −1 at W+ = 0.
(

q0
)∆−4

is a normalization constant that can be obtained from (3.13) by considering the dilata-

tion operator acting on both sides. In other words, φ0(x
′) is dimensionless so that φ

scales as
(

q0
)∆−4

. The overall constant in (3.15) cancels out when we compute energy

correlations. Note that in the y-AdS coordinates (3.2) the wavefunction with definite x-

momentum, (3.15) , is localized at y1 = y2 = 0, y5 = 1 when y+ = 0.

Therefore, the general result is that an incoming plane wave (with no spatial momen-

tum) gives us a very peculiar wavefunction that is δ function localized in the H3 subspace

at the origin W i = 0. In addition we find that the momentum in the W− direction is

proportional to the original energy. The wavefunction for an external operator with a

generic value of the momentum qµ can be obtained by performing a boost of this solution.

The end result is again a wavefunction that is localized at a point in H3. It is localized

at
~W

W 0 = ~q
q0 . The momentum in the W− direction is now −

√−qµqµ

2 . The wavefunctions

corresponding to plane waves have a divergent norm since a plane wave wavefunction has a

divergent norm. One can consider the regularized external wavefunction in (2.28). In that

case we find a finite norm. We discuss this case in more detail in appendix B. As expected,

one finds that the delta function is smeared over a region | ~W | ∼ 1
σq . We will continue to

discuss wavefunctions for plane waves, but having in mind that we will eventually smear

the δ function in (3.15) , as in (2.28).

Once we have the bulk wavefunction we can compute the energy flux one point function.

By considering the effects of the metric perturbation (3.10) , and considering an operator

that creates the bulk wavefunction φ, we obtain the expression

〈E(~n′)〉 = N−2

∫

dW−dΣ3
1

4π(W 0 − ~W.~n′)3
[(2i∂W−φ∗)(−2i∂W−φ)]|W+=0

N2 =

∫

dW−
∫

dΣ3 [φ∗(−i∂W−φ) + c.c.]|W+=0 (3.16)

where Σ3 denotes the integral over the three dimensional hyperbolic space parametrized

by W µ, with WµW µ = −1. The last factor, N2, is simply the total production cross section

and it is related to the two point function of the operator insertion. In other words, the

two point function 〈0|O†
qOq|0〉 = ||Oq|0〉||2 is the norm of the state. This norm is given in

the bulk by the expression for N2. When we insert the wavefunction (3.15) we see that a

single point in the integral over hyperbolic space contributes. We finally get the expected

result 〈E〉 = q
4π , (2.29).
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3.2 Energy flux one point functions in theories with gravity duals

Using the results above we are ready to calculate the energy one point functions for different

type of sources. For a scalar source the symmetries imply the result (2.29). Because there

are no free parameters we know this is the correct result and we did not need to go throught

the previous discussion. The situation is more interesting for current sources. In a theory

that has a gravity dual the three point function of two currents and a stress tensor can be

computed from the bulk interaction between two bulk photons and a bulk graviton that

follows from the bulk Maxwell action

S = − 1

4g2

∫

d5x
√

gF 2 (3.17)

where g is the bulk gauge coupling. This term in the action also determines the two

point function. Thus, we can see that the three point function will be determined and we

will get a particular value for a2 in (2.30). We can find this value by noticing that for

N = 4 Super Yang Mills we had a2 = 0. Thus, any theory that has a gravity dual gives us

a2 = 0, as long as the two derivative approximation (3.17) is valid. In general there will

be higher derivative corrections to this action. Up to field redefinitions there is a unique

higher order operator that can contribute to the three point function

S = − 1

4g2

∫

d5x
√

gF 2 +
α1

g2M2∗

∫

d5x
√

gW µνδρFµνFδρ (3.18)

where W µνδρ is the Weyl tensor. Here M∗ is some mass scale in the gravity theory

determining the strength of the correction relative to the strength of the Maxwell term in

the action. In order to see that this is the only operator that contributes we consider the

possible three point vertices between two photons and a graviton in flat space. It turns out

that there are only two possible structures. This onshell vertex is so constrained because

there is no kinematic invariant that we can make purely with the external momenta, which

all square to zero. In fact the two possible interaction vertices consistent with gauge

invariance are

v1 = ǫµν [ǫµ
1kν

2 (ǫ2.k1) + (1 ↔ 2) − kµ
1 kν

2 (ǫ1.ǫ2)] v2 = ǫµν kµ
1 kν

2 (ǫ1.k2) (ǫ2.k1) (3.19)

where ǫµ
1,2 are the polarization vectors of the gauge bosons and ǫµν the polarization

vector of the graviton. They are all transverse ǫ1 ·k1 = 0 and ǫµµ = 0. The first arises from

the quadratic action (3.17) and the second from the higher order correction in (3.18) .

We expect that the higher derivative corrections give us a deviation from a perfectly

spherical energy distribution for the state created by the currents. Notice that the higher

order correction will not contribute to the angle independent term in the energy one point

function. The reason is that this term is related by the Ward identities to the two point

function and the two point function is not corrected by the presence of the higher order

operator in (3.18) because the Weyl tensor vanishes is AdS. A detailed computation in

appendix D shows that the higher order term indeed contributes to the anisotropic contri-

bution to the energy correlation function

a2 = − 48α1

R2
AdSM

2∗
(3.20)
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Notice, in particular, that in non-supersymmetric weakly coupled QCD we expect that

the higher derivative corrections are comparable to the radius of AdS since a2 is of order

one for weak coupling (2.32).

This anisotropy is intimately related to the anisotropy in the gravitational field that

is produced by a fast moving photon. Let us consider a photon with high momentum

|p−| ≫ 1. We focus on the problem in flat space for the moment. Such a fast moving

particle produces a metric of the form

ds2 = −dx+dx− + d~x2 + δ(x−)(dx−)2h(~x) , ∇2h = 0 (3.21)

where ∇2 is the flat laplacian in the transverse directions. This metric is an exact

solution of Einstein’s equations (with zero cosmological constant) and arbitrary higher

derivative corrections [61]. The particular form of the solution for h depends on the coupling

of the photons to the graviton. For the lowest order action (3.17) we find that h0 ∼
p−
|x| which is independent of the spin of the photon. Here we are focusing on the five

dimensional case, so that we have three transverse directions ~x. On the other hand, the

second interaction (3.18) gives a function h of the form

h1 ∼ p−
M2∗

ǫ∗i ǫj∂i∂j
1

|x| =
3p−
M2∗

|niǫi|2 − 1
3 |ǫ|2

|x|3 (3.22)

where ni = xi/|x|. Note that this contribution to the gravitational field is sensitive

to the spin of the photon and it has a quadrupole form. In the case that we have a

large number of photons, this quadrupole tensor would be proportional to the polarization

density matrix of the photons.

Even though we’ve discussed the case of a photon, all that we have said so far can be

extended to the case that we have a non-abelian gauge theory in the bulk, which corresponds

to a non-abelian global symmetry in the boundary theory.

We have a similar story in the case that the inserted external operator is the stress

tensor itself. Then there are three possible vertices and three parameters specifying the

stress tensor three point function. One of these parameters is fixed by the Ward identities

and it multiplies the three point function that we expect from the gravity action. The

other two parameters multiply higher order gravity corrections. In fact, the three possible

gravity vertices in five dimensions are

v1 = kµ
2 ǫ1

µνǫ2ν
δǫ

3δ
ρk

ρ
2 +

1

4
ǫ1

µνǫ2µνǫ3
δρk

δ
1k

ρ
2 + cyclic

v2 = (kµ
3 ǫ1

µνǫ2ν
δk

δ
3) (ǫ3

ρσkρ
1k

σ
2 ) + cyclic

v3 = (ǫ1
µνk

µ
2 kν

2 )(ǫ2
δσkδ

3k
σ
3 )(ǫ3

ργkρ
1k

γ
1 ) (3.23)

Such vertices arise from terms in the action of the form

S =
M3

pl

2

[

∫

d5x
√

gR +
γ1

M2
pl

WµνδσW µνδσ +
γ2

M4
pl

WµνδσW δσργW µν
ργ

]

(3.24)

This is one way to parametrize the higher derivative corrections. In principle we can

have another curvature cubed term but it does not contribute to the three point func-

tion [62].
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In fact, in [62] such corrections were computed for various string theories. They found

that γ1 and γ2 are non-zero in the bosonic string, only γ1 is nonzero in the heterotic string

and both γ1 = γ2 = 0 in the type II superstrings. Incidentally, 1
N corrections to this action,

yielding an R4 term, were computed for type IIB superstrings in AdS5 × S5 in [63] and

their effect on the 3 point function of stress energy tensors in N = 4 SYM was discussed.

One can compute the contributions of the higher order terms in the action to t2 and t4
as defined in (2.37). After performing some calculation described in appendix D, we find

t2 =
48γ1

R2
AdSM2

pl

+ o

(

γ2

R4
AdSM

4
pl

)

t4 =
4320γ2

R4
AdSM4

pl

(3.25)

to leading order in the γi. In addition we have assumed that the contribution of the

W 3 operator to t2 will be smaller than the one from the W 2 operator. This is expected

in the large radius limit because W 3 has more derivatives. For an N = 1 supersymmetric

theory t4 = 0. Using (3.25) and (2.39) we get the expression for the R2 coefficient that

was derived in [64, 51].

Notice that the presence of the first correction to the action (3.24) can also change

the angular independent part of the energy flux one point function. This change should be

compensated precisely by a change in the stress tensor two point function in order to obey

the Ward identity.

We could also consider charge one point functions. In that case there are two (parity

preserving) structures for the three point function [42, 43, 65]. The coefficient of one of them

is determined by the Ward identities and arises only when we have a non-abelian gauge

symmetry in the bulk. It comes from the usual bulk term of the form
∫

Tr[F 2]. The second

structure arises from a bulk term of the form
∫

Tr[FµνF νδF µ
δ ], or more generally, from

a bulk coupling of the form
∫

fabcF
a
µνF bνδ

F c µ
δ with a totaly antisymmetric fabc. Notice

that these terms do not necessarily come from a non-abelian gauge symmetry. They could

come from a coupling between three different U(1) gauge field strengths in the bulk.

The parity odd terms come from Chern Simons couplings in five dimensions [16, 65].

For example, for a gauge field we can have
∫

A ∧ F ∧ F or its non-abelian generalization.

3.3 Comments on the n point functions

After this discussion on one point functions, let us move on to n point functions. All we

need to do is to consider metric fluctuations which contain several insertions of the energy

flux operator. In general we would have to worry about the bulk tree level interactions

among the bulk gravitons corresponding to the insertions of the operators. In our case,

there is an important simplification. This is due to the fact that the following plane wave

solutions14 are exact solutions of Einstein’s bulk equations [67, 68]

ds2 = ds2
AdS5

+ (dW+)2δ(W+)h(w) (3.26)

14For applications of this type of solutions in confining backgrounds see [66].
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where h(w) is a function defined on the transverse space, which in this case is a

hyperbolic space H3 of radius one, given by −(W 0)2 + (W 1)2 + (W 2)2 + (W 3)2 = −1. The

function h(w) obeys the Laplace equation on this hyperbolic space

~∇2
wh = 3h (3.27)

Of course, one can check that15

h~n′ =
2i

4π(W 0 − W in′
i)

3
(3.28)

is a solution and so will be an arbitrary superposition

h =
n

∑

j=1

h~n′

j
(3.29)

which represents the insertion of n calorimeters at angular positions given by ~n′
j,

j = 1, . . . , n. This is summing all the gravity tree diagrams. We should now consider the

propagation of the wavefunction on the background of this plane wave geometry. We want

to consider the effects of each h~n′

j
to first order in its strength but the combined effect of all

of them. Let us recall how we would analyze this problem in flat space first. We consider

a flat space plane wave of the form

ds2 = −dx+dx− + (dx+)2f(x+)h(~x) + d~x2 (3.30)

and we will eventually take the limit where f(x+) → δ(x+). The scalar field obeys the

equation

−4∂−∂+φ − 4f(x+)h(~x)∂2
−φ + ~∇2φ − m2φ = 0 (3.31)

We now assume that f(x+) is nonzero only within some small neighborhood of the

origin −ǫ < x+ < ǫ. This implies that f(x+) varies rapidly. Thus we assume that this rate

of variation is much faster than the rate of variation of the wavefunction along the rest of

the coordinates. In that region we can then approximately solve the wave equation (3.31) as

φ(x+ = ǫ) = e−
R ǫ
−ǫ

f(x+)h∂−φ(x+ = −ǫ) → φ(x+ = ǫ) = e−h∂−φ(x+ = −ǫ) (3.32)

Generalizing this method to our case of interest we find that

φ(W+ = ǫ,W−,W µ) = e−h∂W−φ(W+ = −ǫ,W−,W µ) (3.33)

where W µ denotes a point in H3. This is nothing else than a translation of magnitude

h in the W− direction. The same type of behavior was observed for scattering of particles

off shock waves in [69] and was used to study four point functions in the context of the

AdS/CFT correspondence in [79].

The computation we want to do involves the overlap of the final state with the initial

state in the background deformed by the insertion of the plane wave. In addition, we need

15Here the normalization factor is fixed such that we obtain the total energy upon integration.
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to divide by the norm (3.16). If we write h =
∑

j h~n′

j
and we expand in each of the h~n′j to

first order we get the n point function

〈∏j E(~n′
j)〉 = N−2

∫

W+=0 dW−dΣ3

[

(i∂W−φ∗)
∏n

j=1 h~n′

j
(W )[(−∂W−)nφ] + c.c.

]

(3.34)

where the integral over dΣ3 is over the hyperboloid W µWµ = −1, µ = 0, 1, 2, 3. Let

us specialize this expression to the case that we have a plane wave external state, which

leads to (3.15). In that case we find that all the h~n′

j
are evaluated at ~W = 0 so that they

become independent of the angle. Thus we get that not only the one point function is

uniform but also all the n point functions are uniform as well. This implies that there are

no fluctuations in the energy and an observer would see a uniform energy deposition in all

the detectors. In other words, we get

〈E(~n′
1) · · · E(~n′

n)〉 =
( q

4π

)n
(3.35)

This is what we would expect by thinking that fragmentation is very rapid at strong

coupling as suggested in [2, 4]. For a state with a generic, but definite, momentum we find

Eqµ(~n′) =
1

4π

(q2)2

(q0 − ~q.~n′)3
(3.36)

which is simply the boosted version of the uniform distribution E = q0

4π that we get for

the case where ~q = 0.

This is the result for plane wave states. If one considers a generic state, then there can

be fluctuations, but such fluctuations are parametrized by the fact that we have a wave-

function for momentum. In other words, one can write the wavefunction φ0(x) appearing

in (3.13) in momentum space as φ̃0(p) ≡
∫

d4xe−ip.xφ0(x). We consider only wavefunctions

which are nonvanishing in the forward light-cone p2 < 0, p0 > 0. We could consider other

wavefunctions but the corresponding operators vanish when they act on the vacuum and

will not contribute. Thus, in the formulas below we imagine that pµ is restricted to be in

the forward light-cone. Then we can write the bulk wavefunction as

φ(W+ = 0,W−,W µ) =

∫ ∞

0

dλ

λ
λ∆eiλW−/2φ̃0(λW µ) (3.37)

We see that for a plane wave with purely timelike momentum we should set φ̃0 =

δ(p0 − q0)δ3(~p) and we recover (3.15). Inserting (3.37) into (3.34) we obtain

〈
n

∏

i=1

E(~n′
j)〉 = N−2

∫

d4p ρ(p)

n
∏

i=1

p4

4π(p0 − ~p~n′
i)

3
ρ(p) = N−2(p2)∆−2|φ̃0(p)|2 ,

N2 =

∫

d4p(p2)∆−2|φ̃0(p)|2 (3.38)

The factor of (p2)∆−2 appears when we consider the norm of a state that has momen-

tum p, see appendix A. This factor is determined by the dilatation operator. In appendix

B we compute ρ for the localized wavefunction φ0(x) given in (2.28).
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(a) (b)

H R3 3
+y

Figure 4: (a) The AdS computation of the energy correlators involves gravitons that propagate

from the boundary to the interior on an H3 subspace of the full AdS5 space. The gravitons originate

on the boundary of H3, at the point where the calorimeter is inserted, and propagate on H3 to the

interior. (b) Since the falling string state is localized on H3 we can approximate the computation

by a flat space one.

The final picture is that for a generic operator insertion we have a superposition of the

results for each momentum, given by (3.36) with a probability weight given by ρ(p) which

is giving us the probability of exciting the mode with momentum pµ in the conformal field

theory (or in the bulk gravity theory).

For a generic φ̃0(p) (3.38) gives non-trivial functions of the angles. The final picture for

what we would see in each event is actually very simple. After we measure the energy on

four of the calorimeters in each event, we can determine the value of p that is contributing

and, therefore, the energies in all other calorimeters is determined. See appendix B for a

longer discussion of this point. In other words, from event to event, we have some random

variations which are completely captured by the distribution of momenta ρ(p). In the bulk

picture, we have a pointlike particle in the bulk with some wavefunction. Measuring all the

energies is tantamount to measuring the position of the particle on H3 and its momentum

in the direction W− when it crosses W+ = 0. We can view this as the horizon of AdS. We

can say that we are simply measuring the momentum of the particle as it crosses the AdS5

horizon. In the approximation that we have a pointlike particle we have a small number

of random (quantum) variables characterizing the event. We only have the position or

momentum of the particle when it crosses the horizon. When we consider a string we

have an infinite number of degrees of freedom and we can have much more variation in the

energy deposition patterns.

4. Stringy corrections

In this section we study stringy corrections to the gravity results. First we consider a flat

space problem that is closely related to the problem we need to solve in AdS. We then

use these results to compute the leading order stringy corrections to the gravity results.

Finally we study the small angle behavior of the two point function and we find the stringy

version of the operator product expansion we discussed above.

4.1 Strings probed by plane waves

Let us first make the approximation that the AdS space is weakly curved and let us approx-

imate the problem as that of strings in flat space, see 4. In fact, we have seen that the state

– 32 –



created by the operator insertion is localized on the transverse surface, the H3 subspace.

In addition, the energy flux operator corresponds to a graviton localized at W+ = 0. Thus,

we can just look at the problem in a neighborhood of this point and approximate it as

a flat space problem where we have a particle, or a string, with nonzero p− which it is

being probed by gravitons with p− = 0 that are localized along y+. Note that the probe

gravitons are extended in the y− direction.

More explicitly, we can consider a flat space problem where we have a string with a

non-zero value of p− which crosses a gravitational plane wave of the form

ds2 = −dy+dy− + (dy+)2δ(y+)h + d~y2 (4.1)

where h is a function of the transverse coordinates obeying ~∇2h = 0. Due to the

symmetries of the problem it is convenient to choose light cone gauge where y+ = −2α′p−τ .

Recall that p− < 0 is the momentum conjugate to y−. Following the usual steps that lead

to light cone quantization we find that we get the following light cone gauge Lagrangian

for the transverse dimensions

S =
1

4πα′

∫ ∞

−∞
dτ

∫ 2π

0
dσdτ [(∂τ~y)2 − (∂σ~y)2] − 1

2π
p−

∫ 2π

0
dσh(~y(τ = 0, σ)) (4.2)

Notice that the h dependent term is localized at τ = 0, at a single value of the

worldsheet time. Thus, the string propagates freely in flat space away from y+ = 0, or

τ = 0. We will also assume that near y+ ∼ 0 the string is localized near ~y = 0 in the

transverse directions. We can then compute correlation functions from the expression

〈Ψ|e−ip−
R 2π
0

dσ
2π

h(~y(σ))|τ=0 |Ψ〉 (4.3)

where |Ψ〉 the full wavefunction of the string state in the light cone gauge theory

at τ = 0. We consider a function h which is a sum of a finite number of plane waves,

h =
∑

j hje
i~kj~y, and we expand to linear order in each perturbation hj . The mass shell

condition is ~k2
j = 0. This implies that ~k is complex. (When we go back to the AdS

problem it will be natural to take the component of k along the radial direction to be purely

imaginary and the others to be real.) Let us assume that the string state corresponds to

the ground state for the bosonic oscillators excitations, at least for the bosonic transverse

directions where the momenta ~k are nonzero. We then find that we have to compute

correlation functions of the form

(−ip−)n〈ψcm|
∏

j

ei~kj~y|ψcm〉〈0|
∏

j

∫

dσj

2π
ei~kj~yosc(σ)|0〉 (4.4)

∼ (−ip−)n〈ψcm|
∏

j

ei~kj~y|ψcm〉
∏

j

∫

dσj

2π

∏

j<i

|2 sin
σi − σj

2
|α′~ki.~kj

where we have separated out the contribution from the center of mass and the oscil-

lators. Since the center of mass wavefunction is well localized we expect no contribution

from it. Namely, we imagine a wavefunction which is localized near ~y = 0 an thus we

simply need to evaluate the plane waves in (4.4) at zero which just gives one. Namely,
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〈ψcm|∏j ei~kj~y|ψcm〉 ∼ 1. Note that if we neglect the oscillator contributions we recover the

gravity result following from (3.33). Therefore, the nontrivial contribution comes from the

oscillators. Notice that these integrals are convergent if the k’s are all small enough. In

the case of the two point function we have

∫ 2π

0

dσ

2π

∣

∣

∣
2 sin

σ

2

∣

∣

∣

α′k1.k2

= 2α′k1.k2√
π

Γ

„

1
2
+

α′k1.k2
2

«

Γ
“

1+
α′k1.k2

2

” = 1 +
π2

24
(α′k1.k2)

2 + · · · (4.5)

In the second line, the 1 corresponds to the gravity result and the second term is the

first correction. Naively, one might have expected the first correction to be of order α′.
However, the first term vanishes and the order α′2 term is the first non vanishing one.

It is convenient to rewrite this result in position space. We find that the gravity result

plus the leading order correction can be written as

N−2

∫

y+=0
dy−d3y

[

iφ∗∂3
y−φ + c.c.

]

[

h1(y)h2(y) +
π2

24
α′2(∂i∂jh1(y)∂i∂jh2(y))

]

,

where N2 =

∫

y+=0
dy−d3y

[

iφ∗∂y−φ + c.c.
]

(4.6)

where φ is the wavefunction of the center of mass of the closed string state and h1 and

h2 are two graviton plane wave states. We have also normalized the result.

In fact, from our discussion we can easily see the origin of the α′ corrections to the three

graviton vertex in various string theories. These were computed in [62]. We first consider

the case where there is just one probe graviton in (4.4). α′ corrections can only arise if

the initial state contains bosonic oscillators in the transverse directions. For a graviton in

the superstring we have no bosonic oscillators in the initial state, only fermion zero modes.

Thus the vertex is the same as the gravity one. In the case of the heterotic string the

graviton contains fermion zero modes for the right movers and a bosonic oscillator for the

left movers. Such an oscillator can give rise to momentum dependent terms of the from

given by the second vertex in (3.23) , but not like the third in (3.23). Finally, in the case

of the bosonic string a graviton with indices in the transverse directions involves bosonic

oscillators for both left and right movers and gives rise to a vertex like the third in (3.23)

(plus the first two, of course).

It is interesting that the string result is finite. One might have worried that since we

are using δ(y+) wavefunctions we would obtain divergencies. As we will see in more detail

below, the Regge behavior of the scattering amplitudes in string theory ensures that the

results are finite.

4.2 Leading order α′ corrections to the two point function

We now generalize this result to curved space. We can simply replace the ordinary deriva-

tives in (4.6) by covariant derivatives. However, in the AdS context h obeys an equation of

the form ∇2h = 3h, or more precisely ∇2h = 3
R2

AdS
h, so that terms that would have been

zero in flat space are non-zero in AdS, so we seem to be faced with an ambiguity. However,

these ambiguities only affect terms that do not have angular dependence, at least for the
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first correction. Thus, such terms only correct the constant part of the energy correlations.

We can fix such corrections by demanding that we obey the energy conservation condi-

tions. It is convenient to think about the problem in the hyperbolic coordinates (3.5). The

graviton wavefunction associated to the insertion of a calorimeter at ~n′ on the two sphere

is given by (3.16)

h ∼ 1
(

W 0 − ~W.~n′
)3 ∼ 1

(

1 + | ~W |2
2 − ~W.~n′

)3 (4.7)

where we have have expanded the result around ~W ∼ 0. We have already seen that

the center of mass wavefunction is localized near the origin of hyperbolic space if we have

a state created by an operator with zero spatial momentum on R1,3, see (3.15). Thus, we

can evaluate the derivatives in (4.6) and then set ~W = 0. This gives

〈E(~n′
1)E(~n′

2)〉 =

(

q0

4π

)2
[

1 +
π2

24

α′2

R4
AdS

(

∂i∂jh∂i∂jh| ~W=0 + const
)

]

(4.8)

where the constant is an angle independent term that we cannot compute purely in flat

space. It can be fixed so that we obey the energy conservation condition. In the end we find

〈E(~n′
1)E(~n′

2)〉 =

(

q0

4π

)2 [

1 +
6π2

λ

(

cos2 θ12 −
1

3

)

+ · · ·
]

(4.9)

for N = 4 super Yang Mills. where cos θ12 = ~n′
1.~n

′
2. We see that, as expected here, the

distribution rises in the forward and backward regions. We have fixed the constant term in

the correction by demanding that the integral over one of the angles gives the total energy.

The dots in (4.9) denote higher order terms in the 1/
√

λ expansion.

In this derivation we have assumed that the state we are considering has no oscillators

excited along the three transverse AdS directions. In the case of the superstring we can

still have a massless mode with indices in the transverse AdS directions since those can

be accounted for by fermion zero modes on the string worldsheet in light cone gauge. The

result (4.9) is very general and holds for any theory with a ten dimensional weakly coupled

dual with an AdS5 factor if we replace 1/λ → α′2/R4
AdS, under the assumption that we are

creating a ten dimensional massless closed string with the external operator.

4.3 Corrections to the n point function

We now consider the n point function 〈E(~n1) · · · E(~nn)〉. We have seen that the gravity

result is just a constant. Let us compute the stringy corrections. The leading deviation

can be computed by expanding the full expression (4.4) up to quadratic order in products

of ki.kj . The resulting correction is basically the same as the one contributing to the two

point function (4.9). In order to see something new we can go to cubic order in the products

ki.kj . In the end this gives us a a correction to the n point function which looks like

〈E(~n1) · · · E(~nn)〉 =
( q

4π

)n
[

1 +
∑

i<j

6π2

λ

[

(~ni.~nj)
2 − 1

3

]

+ (4.10)

+
β

λ3/2

[

∑

i<j<k

(~ni.~nj)(~nj .~nk)(~ni.~nk) + · · ·
]

+ o(λ−2)

]

– 35 –



where β is a numerical coefficient16 and the dots denote terms that are necessary to

ensure that the integral over each of the angles gives zero as well as a term that corrects

the coefficient of the (~ni~nj)
2 term by an order λ−3/2 amount.

Thus, we find that for a strongly coupled field theory the energy distribution is uniform

with small fluctuations which have an amplitude of order 1/
√

λ. In other words, δE/E ∼
1√
λ
. The two point function of these fluctuations is given by the first non-constant term

in (4.10). One might have thought that these flucutuations would be gaussian. However,

we find that the three point function of the fluctuations is of order λ−3/2. Thus, when we

normalize the two point functions to one, the three point functions are of order one. Thus

we conclude that the fluctuations are not even approximately gaussian. More explicitly,

we can define a fluctuation operator

δ =
E − 〈E〉
〈E〉 , and δ̂ =

√
λδ (4.11)

where the operator δ̂ is defined so that its two point function is independent of λ. We

then have

〈δ̂(~n1)〉= 0 (4.12)

〈δ̂(~n1)δ̂(~n2)〉= 6π2

[

(~n1.~n2)
2− 1

3

]

[

1+o(λ−1/2)
]

〈δ̂(~n1)δ̂(~n2)δ̂(~n3)〉= β [(~n1.~n2)(~n1.~n3)(~n2.~n3)+· · · ]

We see that the three point function is not parameterically suppressed relative to the

two point function. Of course, they are both suppressed relative to the gravity result.

4.4 Stringy corrections to charge two point functions

We now consider the two point function of a charge that is dual to a closed string mode.

For example, we can pick one of the SO(6) currents in N = 4 super Yang Mills. More

generally we consider a current associated to a symmetry that is carried by fields in the

adjoint representation in the dual field theory. Imagine that the current comes from Kaluza

Klein reduction. Then the corresponding vertex operator, in light cone gauge, has the form

A+ → ∂τϕeik.x where ϕ is one of the internal dimensions. We assume that the state we

are measuring, |Ψ〉, does not have any oscillator excited in the ϕ direction and that it is

not charged. Thus the one point function of the charge, is zero. The two point function is

actually infinite in the gravity approximation. This is due to the Feynman diagram in 5

(b). This is intimately related to the fact that (3.12) is not an exact solution of the gravity

equations, but it sources a gravitational plane wave proportional to F 2
+i, which leads to

the square of a δ(y+) function. We did not run into this problem in the gravity theory

because there are no diagrams of this form due to the fact that the gravitational shock

wave is an exact solution of the theory. Even in the gravity theory we could have run into

this problem if we had had a higher derivative contact interaction that brings together two

gravitons, as in 5 (c).

16β = −1728
R 2π

0
dσ1dσ2

(2π)2
log[2 sin σ1

2
] log[2 sin σ2

2
] log[2| sin (σ1−σ2)

2
|] ∼ 518 ± 5.
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Figure 5: (a) Feynman diagrams that lead to energy correlation functions. The gravitons do not

interact before they touch the falling state, φ. We have also indicated the t and s channels as we

define them in the text. (b) Diagram that leads to a divergence in the charge correlation function.

The intermediate state is a graviton and the AAh vertex comes from the Maxwell term in the

action. This divergence is cured by going to string theory and exploiting the Regge behavior of the

amplitudes. In (c) we draw a diagram that can arise due to a higher derivative contact interaction

in the gravity theory which could lead to a divergence in the gravity approximation.

Let us now compute the two point function in string theory. The corresponding flat

space expression is similar to (4.5) , but with an extra factor coming from the contractions

of the ∂τϕ field coming from the two vertex operators. We get a result proportional to

∫ 2π

0

dσ

(2π)

∣

∣

∣
2 sin

σ

2

∣

∣

∣

α′k1.k2−2
=

2α′k1.k2−2

√
π

Γ(−1
2 + α′k1.k2

2 )

Γ(α′k1.k2
2 )

∼ −α′k1.k2

4
+ · · · (4.13)

We have defined the integral by analytic continuation in k1.k2 We see that we get a

perfectly finite answer in string theory. The string theory answer even goes to zero as we

take the small momentum limit. Translating this flat space result (4.13) to AdS as we did

above we get

〈Q(~n1)Q(~n2)〉 =
γ√
λ

~n1.~n2 =
γ√
λ

cos θ12 (4.14)

where γ is a positive numerical coefficient. This result has the angular dependence that

one would intuitively expect, with the two oppositely charged particles going in opposite

directions.

Let us emphasize once more an important point. Due to the fact that we are considering

shock waves which are highly localized, with δ(W+) wavefunctions, it is important to

perform the computation in string theory rather than first taking the low energy limit of

string theory and then doing the computation. We will revisit this point later.

Another interesting situation arises when we consider currents that act only on fields

in the fundamental representation, such as flavor symmetries. In this case the currents live

on D-branes in the bulk. For simplicity let us assume that we have two D-branes with

two different U(1) gauge fields in the bulk. Let us call them U(1)A and U(1)B . We could

imagine a QCD-like theory where U(1)A and U(1)B are different flavor number symmetries.

At leading order in N we detect these charges in the detector only if we create a mesonic

operator that contains the corresponding quarks. Consider a situation where we have a
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Figure 6: (a) Worldsheet vertex operator insertions for charge correlators associated to closed

string gauge fields. These charges are carried by the bulk of the worldsheet. In (b) and (c)

we consider charges carried by open strings. We consider an open string stretching between two

different branes called A and B. In (b) we consider the charge two point function for the U(1)A

living on the brane A. The two vertex operators are inserted at the same point. In (c) we consider

the charge two point function for charge living on the brane A, U(1)A, and the charge living on brane

B, U(1)B. The vertex operators are inserted on different boundaries and the result is non-singular.

lorentz scalar meson where the quark is charged under U(1)A and the anti-quark under

U(1)B . In such a situation we expect to find only one charge of each type in the detector.

In this case the charge one point functions are 〈QA(~n)〉 = 〈QB(~n)〉 = 1
4π . What is the

charge two point function for U(1)A? From the boundary field theory point of view we

expect it to be zero for generic angles since the charged quark can be detected only at one

particular angle, since we are working to leading order in N where we do not create quark

anti-quark pairs. On the other hand, to leading order in N , from the gravity plus maxwell

theory in the bulk we get get a completely spherically symmetric distribution of charge. In

this case, the divergent term coming from the Feynman diagram in 5 (b), is subleading in

N and we do not consider it (string theory ought to make this 1/N correction finite too).

In other words, the two point function for the charges is 〈QA(~n)QA(~n′)〉gravity = 1
(4π)2

. This

contradicts the field theory expectations. The resolution is that the stringy corrections are

so large that they completely change the gravity result. Let us first see how this works

in the flat space case. Here, we can quantize the open string in light cone gauge and we

will get an action very similar to the one we had for the closed string except that the

photon vertex operator, which is inserted at τ = 0, is also inserted at σ = 0 at one of the

boundaries of the open string. We find that

〈ψcm|ei~k1~yei~k2~y|ψcm〉〈0|ei~k1~yosc(0,0)ei~k2~yosc(0,0)|0〉 (4.15)

If we ignore the oscillators we go back to the gravity result. However, the contribution

from the oscillators involves a singularity, since both vertex operators are evaluated at the

same point. Formally, this gives a contribution of the form 02α′k1.k2. If k1.k2 > 0, then

we see that this vanishes. Thus, if we define the answer by analytic continuation we get

zero for all values of k1.k2, including the physical values of k1.k2 for our problem (which

are negative). The reason that stringy corrections have such a large effect is that we start

with singular wavefunctions for the photon, which contain a δ(y+). If we had started with
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a smooth wavefunction in the x+ dimension we would have integrated the vertex operators

along the τ direction on the boundary of the open string worldsheet and we would have

obtained a non-vanishing function of k1.k2.

On the other hand, if we compute the two point function for the two different U(1)

charges, the charge carried by the quark and the charge carried by the antiquark, then we

get the vertex operators at opposite points of the string and we obtain a finite answer

〈ψcm|ei~k1~yei~k2~y|ψcm〉〈0|ei~k1~yosc(0,0)ei~k2~yosc(0,σ=π)|0〉 ∼ 22α′k1.k2 (4.16)

In this case the leading order α′ correction to the two point function reads

〈QA(~n1)QB(~n2)〉 =
1

(4π)2

[

1 − 8 log 2√
λ

cos θ12

]

(4.17)

We see that there is a tendency for the two charges to go in opposite directions, as one

naively expects. Of course, at weak coupling the quark and the antiquark fly in opposite

directions (if we have the simplest operator which contains only a quark anti-quark pair).

If we were to consider a higher point function we would get zero again.

The general lesson is that when we compute charge correlators it is very important to

understand the effects of stringy corrections.

Once we consider finite N corrections we do not expect the two point functions for the

same U(1) to be exactly zero.

4.5 Small angle behavior of the two point function and the operator product

expansion

In this section we study the small angle behavior of the two point functions using string

theory. The leading order correction to the energy flux two point function (4.9) is analytic

at small angles, i.e. when θ12 → 0. As we will explain below this is no longer the case once

all the α′ corrections are included. We will show that at small angles there is a non-analytic

term of the form |θ12|p with a power, p, that we will compute. This power is intimately

related to the singularities in the first line of (4.5) as a function of k1.k2.

Let us first understand how the singularities in the flat space answer (4.5) arise. These

singularities are at α′k1.k2 = −1 − 2n. We can rewrite this condition as

t ≡ −(k1 + k2)
2 =

2 + 4n

α′ , n = 0, 1, 2, . . . (4.18)

Similar looking singularities are a well known feature of string scattering amplitudes

and they arise when an invariant, such as t, is equal to the mass of a string state. In that

case we can view them as arising from the production of an on-shell closed string state.

In our case, however, there are no states in the closed string spectrum with masses given

by (4.18). Thus we seem to have a puzzle. We will argue that we indeed have certain string

states, but of a non-local kind.

Let us first understand the worldsheet origin of these singularities. For concreteness,

let us focus on the first singularity at α′k1.k2 = −1. We see that at this point the integral

in (4.5) diverges at σ = 0 like
∫

dσ
σ . At σ ∼ 0 the two closed string vertex operators of the
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Figure 7: (a) The poles of the ordinary closed string amplitude arise from the region where the

two vertex operators are close to each other but are integrated over both τ and σ. (b) Wordsheet

OPE for the problem we are considering where we have wavefunctions localized in x+. In light cone

gauge this results in operators localized at τ = 0. Thus we get singularities from the region of the

integral where σ12 → 0.

external gravitons come close together, see 7 b. This looks similar to the ordinary OPE

region of a closed string worldsheet which produces the usual closed string state poles. The

crucial difference is that in our case the integral runs only over the sigma direction (see 7

b), while in the ordinary case it runs over τ and σ (see 7 a). For this reason the position

of the poles has been shifted compared to the ordinary closed string poles. Schematically

we have

Usual Case :

∫

dz2|z|α′k1.k2 ∼ 1

α′k1.k2 + 2

Our Case :

∫

dσ|σ|α′k1.k2 ∼ 1

α′k1.k2 + 1
(4.19)

We have now understood how the singularities arise from the worldsheet computation.

Before moving on, let us clarify further a confusing aspect of these singularities. All we are

doing is to scatter four string states: the two gravitons, the state we are measuring and its

complex conjugate. So, why are the singularities different than singularities of the ordinary

closed string scattering amplitude? What happens is that we are choosing very peculiar

wavefunctions for the two gravitons. These wavefunctions contain δ(y+) factors which

implicitly carry an infinite amount of momentum. More precisely, in order to go from the

usual momentum space result to our expression for δ(y+) wavefunctions we should integrate

the momentum space result over k1 + and k2 +. The four point amplitude is characterized

by t = −(k1 + k2)
2 and s = −(p + k1)

2, where p is the momentum of the incoming closed

string state with non-zero p−. Since ki− = 0, we have that t is independent of ki + and it

continues to be given by the transverse components of ki, t = −(~k1 + ~k2)
2. On the other

hand s contains a contribution of the form s = 4p−k1 + + · · · . For the polarizations of the
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gravitons that we are choosing here the amplitude has the form [70]17

A4 = p4
−

(

1

s
+

1

u

)

Γ(1 − α′s
4 )Γ(1 − α′t

4 )Γ(1 − α′u
4 )

Γ(1 + α′s
4 )Γ(1 + α′t

4 )Γ(1 + α′u
4 )

, u = −s − t (4.20)

In the gravity limit we recover the results that we expect from the diagram in 5 (a) and

a crossed version. We can take p− to be fixed. Then the integral over k1+ translates into

an integral over s.18 At large s, the four point amplitude is controlled by Regge behavior.

The amplitude goes as

A4 ∼ s−2+ α′t
2 (4.21)

So the integral over s converges at large values of s for small t.19 As we increase t, the

integral over s first diverges when the amplitude goes like 1/s, A4 ∼ 1/s. This condition

is precisely the n = 0 case in (4.18). We get the higher order ones by a similar reasoning

by expanding the amplitude to higher orders in the 1/s expansion. One minor subtlety is

that only even powers of 1/s give rise to 1/s terms in the full amplitude, after we adjust

t appropriately.20 Odd powers of 1/s would lead to extra singularities beyond those given

by (4.18) , see more on this below. Thus, we see that the poles (4.18) are associated to

the high energy behavior of the string amplitude. This is to be expected since by probing

the string at y+ = 0 we are taking a snapshot of the string state and this requires high

energy scattering. The fact that the amplitudes we are computing are finite is related

to the fact that the high energy scattering displays Regge behavior. In conclusion, the

result we obtained in lightcone gauge is perfectly consistent with the usual structure of the

Shapiro-Virasoro amplitude.

A related remark that we can make at this point is the following. Let us go back to the

case where we consider a neutral falling state probed by two closed string gauge bosons.

Going to ten dimensions we can view the gauge bosons as Kaluza Klein gravitons. In that

case the flat space amplitude is very similar to (4.20) except that we now have

Ag = p2
−

Γ(1 − α′s
4 )Γ(1 − α′t

4 )Γ(1 − α′u
4 )

Γ(1 + α′s
4 )Γ(1 + α′t

4 )Γ(1 + α′u
4 )

(4.22)

If we take the small momentum limit of this amplitude we get a constant. If we

integrate this constant with respect to s, in order to go to δ function wavefunctions, then

we get an infinity. This is the infinity that we mentioned above as coming from the field

theory diagram in 5 (b). Of course the full string amplitude is not constant. Thus, once

we go to string theory we should integrate the full string amplitude (4.20) , which goes as

17We take the momenta to be nonvanishing only in the first five dimensions. The falling string state

is taken to be a graviton which has indices in the remaining five dimensions. Of course the two probe

gravitons have indices in the ++ directions.
18The integral over k2 + simply gets rid of the momentum conservation delta function in the k+ direction.
19There are poles along the real s axis. As usual, we give these poles a small positive or negative imaginary

part so that we are analyzing the amplitude in the physical sheet. Thus, the poles along the real s axis do

not lead to divergences in the amplitude.
20In other words, A4 ∼ s−2+α′t/2

P

∞

n=0 cn(α′t)/sn, but c2k+1(α
′t = 4k + 4) = 0.
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Ag ∼ s−1+ α′t
2 and converges if t is negative. We can define it by analytic continuation for

other values of t. Thus, we see that for this particular case, taking the low energy limit of

the amplitude first and then doing the s integral gives a very different answer than doing

first the s integral and then the low energy limit, which gives (4.13). In the case of energy

correlations, if we first take the low energy limit of (4.21) and then we do the integral we

get the same answer as doing first the integral and then the low energy limit. In this case

this happens because the contribution is coming mainly from the s ∼ 0 and u ∼ 0 region.

It is useful to perform explicitly the worldsheet operator product expansion of the two

graviton vertex operators, see figure 7 (b). We obtain21

p−eik1.y(τ=0,σ)p−eik2.y(0,0) ∼ p2
−|σ|α

′k1.k2[ei(k1+k2)y(0,0) + · · · ] (4.23)

The pole arises when the power of σ is precisely 1/σ. This gives rise to the n = 0 case

in (4.18). The operator that appears at this point has the form

p2
−eik.y , m2 = −k2 =

2

α′ (4.24)

This is the operator that appears on the worldsheet in light cone gauge. One is tempted

to write an operator in conformal gauge that would reduce to (4.24) in light-cone gauge.

Due to its peculiar p− dependence, we are forced to write an expression of the form22

(∂αy+∂αy+)
3
2 δ(y+)eik.y (4.25)

with k obeying the condition (4.24). This operator is formally a Virasoro primary but

is not a proper local operator on the string worldsheet. Similar operators were shown to

control Regge physics in [71]. Of course, our regime is closely connected with Regge physics

so it is not a surprise that similar operators appear. The operator (4.25) , without the delta

function, has spin j = 3 in the y+, y− plane, as we had in the field theory discussion. This is

related to the factor of p2
− that appears in (4.23). Notice that the complete operator (4.25)

, including the delta function, has total spin 2. It corresponds to the field theory operator

Uj−1 with j = 3.

The operator (4.24) is the leading contribution in the worldsheet OPE (4.23). As

we expand the exponentials at higher orders we pick up new operators which contain

derivatives with respect to the transverse directions. Some of these operators can have

transverse spin. These strings states have higher masses. They all have spin j = 3 in

the y± directions. Notice, however, that terms that come with odd powers of σ in the . . .

in (4.23) vanish upon integration over σ. The reason is a Z2 symmetry from interchanging

σ → −σ. This is completely analogous to the fact that terms that are not symmetric under

the interchange of z → z in the usual case where we integrate over the whole complex plane

vanish upon integration. This is nothing else than the level matching condition. These

21In the following expression it is convenient to redefine the range of σ to [−π, π], such that insertions

close to the operator at zero are given by small |σ|.
22Notice that the extra power of p− appears to compensate the one appearing from the delta function

δ(y+) ∼ δ(τ)
p−

.
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Figure 8: Small angle expansion of the energy correlation function. The expansion is dominated

by the propagation of a spin three non-local string state, denoted here by a thick red line.

terms are the same as the ones discussed above in connection with the singularities for odd

powers of 1
s . Now we understand why these poles are absent from (4.5).

In the end, the singularities arise from a fairly ordinary worldsheet operator product

expansion in light cone gauge. On the other hand, we cannot associate the corresponding

worldsheet operator to an ordinary closed string state. This is related to the fact that the

operator product expansion of two energy flux operators in the field theory lead to non-local

operators in the y− direction. In the field theory we were not too disturbed by the appear-

ance of operators that are non-local in the y− direction, so we should also not be surprised

that in string theory we also get string states that are non-local in the y− direction. These

string states are localized at y+ = 0, carry zero p− and are local in the transverse directions.

The final conclusion of this discussion is that we should interpret the singularities

in (4.5) as arising from the propagation, in the transverse space, of non-local string states

created by the operators like (4.24) or (4.25).

We will now argue that the short distance singularity of the energy flux two point

function is governed by the operator associated to the first singularity in (4.5). Since we

are working in the regime of large but fixed λ we might imagine that we could always

expand the two point function as in the second line of (4.5). This is not correct if the angle

is very small. In that case the relevant relative momenta are of order t ∼ 1
|θ12|2

1
R2

AdS
. Thus,

at angles of order θ ∼ λ−1/4 we cannot use the approximations leading to (4.9). However,

we can use the interpretation given above to the poles in t to write the flat space result

in the first line of (4.5) as a sum over contributions of poles. Then each pole corresponds

to the contribution of a physical (but non-local) string state that is localized in the y+

direction but propagating in the transverse directions. We generalize this result to AdS

by replacing the transverse space by H3. Now the non-local string states propagate on

the H3 subspace of AdS5. These states propagate from the center of H3, where the string

state created by the localized operator insertion is concentrated, to a region near the H3

boundary, near the insertion of the two energy flux operators, see 8. At large distances

from the H3 center we expect that the wavefunction of the non-local string state goes as

1/| ~W |∆, | ~W | ≫ 1, with

∆ ∼ mRAdS ∼
√

2λ1/4 + · · · (4.26)
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where m is given, to a good approximation, by the mass of the flat space state computed

in (4.24). Incidentally, we can calculate the conformal weight ∆ of other (generally non lo-

cal) operators with arbitrary spin in the same manner. They correspond to the string states

(∂αy+∂αy+)
j
2 δ(y+)eik.y (4.27)

The mass of these states is given in flat space by m2 = −k2 = 2
α′ (j − 2). Therefore

∆(j) ∼
√

2
√

j − 2λ1/4 + · · · (4.28)

This formula is expected to be a good approximation only for j ≪ λ1/2, since it

was derived assuming the flat space approximation. For very large values of j we get a

logarithmic behavior in j, see [77]. Of course this is simply the analytic continuation of

the leading Regge trajectory.

The dots in (4.26) and (4.28) denote terms independent of λ as well as higher order

corrections. We then need to compute the overlap of a wavefunction which decays like

1/| ~W |∆ for large | ~W | with the wavefunctions of the two gravitons associated to the energy

flux insertions. We find a behavior

〈E(θ1)E(θ2) · · · 〉 ∼ θ∆−6
12 〈U3−1(θ2) · · · 〉 (4.29)

where U3−1 is related to the lightest spin 3 non-local operator, with zero p−, which

at strong coupling has a large dimension (4.26). In string theory this expectation value is

computed by inserting the operator (4.24).

In conclusion, the structure of the OPE is precisely what we expected from general

principles in any conformal field theory. At weak coupling the operator product expansion is

dominated by operators of twist slightly bigger than two. This leads to correlation functions

that are highly localized along certain jet directions. For any value of the coupling the

operator, or string state, that dominates has zero p− and spin j = 3. At strong coupling,

the operator acquires a large twist given in (4.26). The fact that operators with spin j > 2

have large dimensions at strong coupling is seen to be intimately related with the fact that

the energy distribution is uniform. Of course, this fact is also connected with the validity

of the gravity approximation in the bulk.

5. Summary, conclusions and open problems

Let us summarize some of our results.

We studied energy correlation functions in conformal field theories. Energy correlation

functions are an infrared finite quantity that is useful for characterizing the states produced

by localized operator insertions in a field theory [7, 38, 13].

They can be computed for all values of the coupling since they involve the stress

tensor operator [9] and make no reference to a partonic description. This is more manifest

at strong coupling where the partons are difficult to see in the gravity or string description.

After a conformal transformation these energy correlation functions amount to measur-

ing the state along a null surface. More precisely, each “calorimeter” insertion corresponds

to an integral of the stress tensor along a lightlike line,
∫

dy−T−−, (2.6).
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We have argued that the small angle behavior of the energy correlation functions is

controlled by an operator product expansion which features non-local light-ray operators

of definite spin. When two calorimeters come close to each other we have a spin three

operator 〈E(θ1)E(θ2) · · · 〉 ∼ |θ12|τ3−4〈U3−1(θ2) · · · 〉. These operators can be discussed for

any coupling. We recalled the weak coupling expression for the twist [31] (2.22) , and we

also computed the twist at strong coupling τ ∼
√

2λ1/4 (4.26) , after having identified the

string states that are dual to the operator U3−1. These are not ordinary closed string states.

They are peculiar string states localized along x+ = 0 that have non-local vertex operators

on the covariant worldsheet but do have a local description on the worldsheet in light-cone

gauge. Closely related string states appear in the Regge limit [71]. Despite their unfamiliar

features they control the short distance singularities of energy correlation functions.

The light-ray operators that appear in the small angle behavior of the correlator are

related to the ones that control the moments of the parton distribution functions. In

fact, one can write a precise relation between the energy correlation functions on a special

state and a particular moment of the functions that govern the deep inelastic scattering

amplitude (2.49).

We have seen that energy flux one point functions in states created by currents or stress

tensor insertions have an “antenna” pattern23 which is determined by the three point func-

tions in the conformal field theory (2.33) (2.37). In the gravity description this pattern is

spherical but as we include higher order corrections to the gravity action we start seeing de-

viations from the spherical pattern (3.20) (3.25). These deviations are sensitive to the spin

of the operator that created the excitation in the conformal field theory. In the particular

case of N = 4 super Yang Mills, the energy one point function is spherical for all values

of the coupling. In more general N = 1 superconformal theories we find that the antenna

pattern, (2.36) (2.39) , depends on the parameters a and c that characterize the three point

functions in the current/stress tensor multiplet [46, 45]. These results are exact expressions,

valid for any coupling. They depend only on the two anomaly coefficients a and c defined

in [46]. Demanding that the energy that calorimeters measure is positive we get a constraint

on a and c, |a − c| ≤ c/2, which is saturated for free field theories (of course, c > 0).

We gave a general prescription for computing the energy correlation functions on the

gravity side. The operator insertion in the field theory produces a string state that falls

into the AdS horizon. Energy correlation functions depend on the wavefunction of this

string state at the AdS horizon. The falling string is probed by particular shock waves

associated to the insertion of each calorimeter. This can be computed in a simple way by

choosing a coordinate system in AdS5 that is non-singular at the horizon. We can view the

computation of the energy correlation functions as taking a snapshot of the falling string

state as it crosses the horizon. In the gravity approximation the result depends only on the

momentum distribution of the initial state and it is independent of the spin or any other

property of the string state we consider. If the state carries a purely timelike momentum

qµ = (q0,~0), then the energy distribution on the detector is perfectly spherical with no

23Remember that individual events do not present this pattern. This refers to the one point functions

which consist of averages over events.
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fluctuations. As we include stringy corrections we find small fluctuations that are inversely

proportional to the square of the radius of AdS in string units (or 1/
√

λ) (4.9) (4.10).

These fluctuations are small but they are not gaussian (4.12). Since the shock waves we

are considering are infinitely localized one might worry that this leads to divergences. In

fact, they would lead to divergent answers in a field theory context (at least in some cases).

The Regge behavior of string amplitudes at large energies ensures that the results we obtain

are finite.

It should be fairly straightforward to generalize this discussion to other dimensions.

The discussion in 2+1 dimensions might have some condensed matter applications, similar

to [72].

It would also be interesting to understand finite N corrections.

There has been a great deal of progress in computing perturbative scattering ampli-

tudes in N = 4 super Yang Mills, see [73] for example. From these scattering amplitudes

one can compute the energy correlation functions. On the other hand, since the energy

correlation functions are already infrared finite, it would be nice to see if any of the meth-

ods developed to compute amplitudes could be extended to compute the energy correlation

functions directly, without having to compute the amplitudes first.

It would also be interesting to consider the “hadronization” corrections for a non-

conformal theory. In particular one could imagine a non-conformal theory with a gravity

dual. In a confining theory with a gravity dual we expect that these corrections will

be large in the large N limit because the strings cannot break. One could also try to

understand situations where the theory becomes free in the IR, such as 4 + 1 dimensional

super Yang-Mills, or dimensionally regularized N = 4 super Yang Mills.

It would also be interesting to generalize this discussion to more complicated initial

states such as the one resulting from the collision of two closed string modes in the bulk.

This would be analogous to pp collisions.

Finally, this discussion might have some implication for black holes, since energy cor-

relations are a way of measuring the final state of Hawking radiation and its non-thermal

properties.
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A. Positivity of
∫

dy−T
−−

Let us consider first free field theories. The classical expression for the stress tensor for the

Maxwell field, T−− ∼ ∑

i=1,2 F−iF−i, is explicitly positive since it is a sum of squares. On

the other hand, the quantum expectation value of T−− can be negative. Let us recall why

this happens. Formally, we also have the sum of squares of hermitian operators, so that

we would also expect a positive answer. However, when we normal order we subtract and
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infinite constant. Then the normal ordered expression is not a sum of squares of hermitian

operators. In fact, we have schematically T−− ∼ (a†)2 + a†a + a2 where we have separated

the operator into terms with different numbers of creation and annihilation operators. By

considering a state of the rough form |Ψ〉 = |0〉 + ǫa†1a
†
2|0〉, and using that the vacuum

expectation value of T−− is zero we find that 〈Ψ|T−−|Ψ〉 ∼ Re[cǫ] + o(ǫ2) where c is some

number. By taking ǫ to be a small complex number we see that we can make T−− negative

at a point [74].

Let us now consider the integrated expression E =
∫

dy−F−iF−i. This expression has

the schematic form

E ∼
∫ ∞

0
dp+p+(ap+(~y))†ap+(~y) (A.1)

we thus see that we have the integral of products of operators and their adjoints.

This is an explicitly positive operator. We have used the variable p+ ∼ −2p− which is

positive. Notice that terms with two a† or two a operators have disappeared from (A.1)

due to the following argument. The integral over y− enforces that the total p+ should be

zero. However, creation operators can only increase p+, thus we do not obey the p+ = 0

constraint with only creation operators. Further discussion on the null energy condition

for free fields can be found in [17].

Let us consider now an interacting field theory. If we choose the gauge A− = 0,

then the stress tensor T−− continues to be quadratic in the fields and the above argument

would hold. Of course, this argument is not too convincing since we might be ignoring

renormalization subtleties or problems with the gauge choice. It would be nice to find a

more general and solid argument for an interacting field theory.

B. Energy distributions in gravity for generic states

B.1 Energy distributions for general states

Here we show how to go between a discussion of n point functions and the computation of

probabilities for seing various energy distributions on the detector. Sometimes one might

be interested in computing the probability functional ρ[E(θ)] for measuring a particular

pattern of energy deposition on the calorimeters. When one computes jet amplitudes one

is computing probabilities of this kind, where one integrates over certain regions, such as

the low energy region between two jets, etc.

If we are given ρ we can compute the n point functions, as 〈E(θ1) · · · E(θn)〉 =
∫

DEρ[E ]E(θ1) · · · E(θn).

Formally one can also go in the other direction by computing the generating functional

for energy correlation functions, 〈ei
R

d2θλ(θ)E(θ)〉. This expression is a functional of λ(θ) and

its expansion in powers of λ gives us the n point functions. Then ρ is given by

ρ[E ′] =

∫

Dλe−i
R

d2θλ(θ)E ′(θ)〈ei
R

d2θλ(θ)E(θ)〉 (B.1)

– 47 –



Just in order to see how this works, let us start with the n point functions given

in (3.38). We can easily compute the expression

〈ei
R

d2θλ(θ)E(θ)〉 =

∫

d4qρ(q)ei
R

d2θλ(θ)Eqµ (θ) (B.2)

where Eqµ(θ) is the function in (3.36) and ρ is defined in (3.38). After doing the

functional integral in (B.1) we get

ρ[E ] =

∫

d4qρ(q)
∏

θ

δ[E(θ) − Eq(θ)] (B.3)

We see that we have a continuum of δ functions, one for each angle. But we are integrating

only over four variables. Thus, once we fix the energy at four points, the energy at all

other points is also fixed.

The general, formal, string theory expression for the energy correlators has a similar

form, except that we have to integrate over the infinite number of variables specifying the

string wavefunction. At finite N we would also have many string states.

B.2 Bulk wavefunction for a localized state

Here we start with the wavefuntion φ0(x) ∼ e−iq0te−
(t2+~x2)

σ2 that we mentioned in (2.28).

Its Fourier transform is

φ̃0(p) =
∫

d4xe−ipxφ0(x) =
∫

d4xeip0t−i~p~xe−iq0t− (t2+~x2)

σ2 ∼ σ4e−
σ2

4
[(p0−q0)2+(~p)2] (B.4)

The bulk wavefunction then has the form

φ(W+ = 0,W−,W µ) ∼ (q0)∆
∫ ∞

0
dλ̃λ̃∆−1eiλ̃W−q0/2e−

(σq0)2

4
[(λ̃W 0−1)2+|λ̃ ~W |2] (B.5)

We are considering the case that q0σ ≫ 1. We then see that as soon as | ~W | ≫ 1/(σq0)

the answer is exponentially suppressed. In the region with large | ~W | ∼ W 0 ≫ 1 we can do

the integral (B.5) by saddle point approximation and we find

φ(W ) ∼ (q0)∆(W 0)−∆ 1

(σq0)
eiq0W−/(2W 0)e−

(σq0)2

8 (B.6)

We then insert this in (3.34) to find an expression of the approximate form

〈E(~n′
1)E(~n′

2)〉 ∼ q2
0e

− (σq0)2

4

∫

dΣ3
1

(W 0)∆+2

1

(W 0 − ~W.~n′
1)

3

1

(W 0 − ~W.~n′
2)

3
(B.7)

where we used that N2 in (3.34) is not exponentially small, and in (B.7) we have kept

only the leading exponential behavior in σq0. We have also approximated the integrand in

the large W 0 region which we expect to dominate for the singular small angle behavior of

the two point function. Finally we find the singular small angle behavior

〈E(~n′
1)E(~n′

2)〉 ∼ |θ|2∆−4e−(σq0)2/4 (B.8)
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This is precisely the power we expect for the double trace contribution as was

discussed in [75]. This term is exponentially suppressed when we consider a state with

definite momentum. Thus, the term that gave the largest contribution in the deep inelastic

scattering analysis in [75] does not contribute to energy correlators when we consider

states created with definite momentum. They do contribute if the state does not have

definite momentum in x-space. In fact, we saw that a state with definite momentum in

y space is directly connected with the deep inelastic scattering amplitudes (2.49). Such

a state does not have definite momentum in x-space and will not have the exponential

suppression that we get in (B.8).

We should emphasize that the contribution to (B.8) is coming from the region where

the particle is crossing the horizon at a position that is close to where the calorimeters

are inserted.

C. Computation of the energy and charge one point function in terms of

the three point functions of the CFT

We denote by O any operator, which could be a scalar operator S or a vector ǫ.j or a

tensor ǫijTij .

Let us start by recalling some formulas for two point functions

〈0|S(t, x)S(0, 0)|0〉 =
1

[−(t − iǫ)2 + |~x|2]∆

〈0|T (S(t, x)S(0, 0))|0〉 =
1

[−t2 + |~x|2 + iǫ]∆
(C.1)

where the first is not time ordered and the second is time ordered. Of course the same

prescription works for vector or tensor operators. The operator insertion with a definite

timelike momentum qµ = (q0,~0) can be written as

Oq|0〉 =

∫

dte−iq0tO(t)|0〉 (C.2)

and it creates a state with energy E = q0 > 0. The fourier transform of the two point

function is
∫

d4xe−iq.x 1

[−(t − iǫ)2 + |x|2]∆
= c(∆)θ(q0)(−q2)∆−2 , c(∆) =

(2π)3(∆ − 1)

4∆−1Γ(∆)2
(C.3)

This is the norm of the state that (C.2) creates. This will also give us the total

production cross section if the operator O couples to the standard model. As remarked

in [76] the positive norm condition implies ∆ ≥ 1.

We are interested in starting from the ordinary expressions for the correlation func-

tions in position space and extracting the limit that corresponds to the energy or charge

correlators. In doing so, it is important to order the operators appropriately. For the

non-time-ordered three point function the correct prescription is

〈0|S(x2)S(x1)S(x3)|0〉 = (C.4)

=
1

{[−(t23 − iǫ)2 + (~x23)2][−(t13 − iǫ)2 + (~x13)2][−(t21 − iǫ)2 + (~x21)2]}∆/2
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If one considers tensor operators we get similar denominators and we choose the same

iǫ prescription. This iǫ prescription is a simple way to enforce the right ordering of the

operators. Another way to say this is that an operator that is to the ‘left’ of another should

have a more negative imaginary part in the time direction. When one does perturbation

theory, it might be convenient to use time ordering along a Keldysh contour. However, for

our purposes this simple prescription suffices.

Let us first show how to extract the energy correlation for a state created from a scalar

operator with fixed momentum, or at least fairly well defined momentum, as in (2.28).

In this case, we know that the answer is independent of the angles and that the overall

coefficient is determined by energy conservation. Nevertheless it is instructive to discuss

this case in detail since the computation is the simplest and one can apply a similar method

for other cases. Our method is not too elegant and there is probably a more direct and

elegant method than the one we applied here.

We extract the energy correlation by directly performing the limit and the integral

in (1.1). We use translation invariance to fix the position of the first operator at x3 = 0.

For simplicity we place the detector along the direction z, so that x1 = (t, 0, 0, r). We

will take the limit r → ∞. If t is generic, then the three point function will decay as

1/r8 since it would be determined by the dimension of the stress tensor and the operator

product expansion. This would be decaying too rapidly in order to give a finite large r

limit. However, there is a larger contribution from the region t ∼ r, the region on the

light-cone of the inserted operators. This is the region that will contribute. Of course,

this is precisely what we would expect in a theory of massless particles. It is convenient to

define coordinates x± = t ± r. We will find that the region with finite x− will contribute.

In addition, only the T−− component of the stress tensor can contribute. The integral over

t can be traded for an integral over x−. So we first take the r → ∞ limit. We then do the

integral over x− and at the end we do the integral over x2.

Let us see what each of these steps gives us. In order to follow this appendix the reader

would need to have a copy of the paper by Osborn and Petkos [43] , since we will make

frequent reference to it. We start with the correlation function for

〈0|S(x2)T−−(x1)S(x3)|0〉 ∼
1

x2∆−2
23 x2

12x
2
13

(

x+
12

x2
12

− x+
13

x2
13

)2

(C.5)

from equation (3.1) of [43]. We are not going to keep track of overall numerical coeffi-

cients. After multiplying by r2 and taking the r → ∞ limit we get

lim
r→∞

r2〈0|S(x2)T−−(x1)S(0)|0〉 ∼ (x−
2 )2

(x2
2)

∆−1

1

(x− − iǫ)3(x− + iǫ − x−
2 )3

(C.6)

We now perform the integral over x−. Note that we can close the contour on either

the upper or lower x− plane and pick one of the two poles in (C.6). We then find

lim
r→∞

r2〈0|S(x2)

∫

dx−T−−(x1)S(0)|0〉 ∼ 1

(x2
2)

∆−1

1

(x−
2 − 2iǫ)3

(C.7)
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We now integrate over the two transverse x2 coordinates and use the the wavefunction

in (C.2) does not depend on them. We find

lim
r→∞

r2

∫

d4x2e
iq0t2〈0|S(x2)

∫

dx−T−−(x1)S(0)|0〉 (C.8)

∼
∫

dt2dz2e
iq0t2 1

[−(t2 − iǫ)2 + z2
2 ]∆−2

1

(t2 − z2 − 2iǫ)3
∼ θ(q0)(q0)2∆−3

where we have also done the remaining two integrals. When we divide by the two

point function (C.3) we get 〈E〉 ∼ q0. The numerical coefficient can also be computed at

each step. Of course, this gives the right answer 〈E〉 = g0

4π due to the Ward identity which

fixes the coefficient of the three point function (C.5) in terms of the coefficient of the two

point function (C.1) , see eqns (6.15), (6.20) of [43].

This procedure can be repeated replacing the operator S by a current ǫ.j. The compu-

tations are identical but with more indices and we use a computer. In this case the three

point function of a stress tensor and two currents is fixed by conformal invariance, plus the

Ward identity, up to one unknown coefficient. Conformal invariance leaves two possible

structures and the Ward identity fixes the coefficient of one of them. In this case we find,

as expected, that the energy correlation function depends on the angle with respect to the

vector ǫ. Here we simply quote the value of the parameter a2, introduced in (2.30) , in

terms of the parameters ê, ĉ defined in (3.13) and (3.14) of [43].24 We find that

a2 =
3(8ê − ĉ)

2(ê + ĉ)
→ 3

∑

i(q
b
i )

2 − (qwf
i )2

∑

i(q
b
i )

2 + 2(qwf
i )2

(C.9)

where we indicated the value for a free theory with bosons and Weyl fermions of charges

qb
i and qwf

i . The combination (ê + ĉ) is fixed in terms of the coefficient of the two point

function of two currents via 6.26 of [43].

We can do this also for the correlation functions of the form 〈0|ǫ∗ijTijEǫijTij |0〉. We

can then compute the coefficients t2, t4 introduced in (2.37)

t2 =
30(13â + 4b̂ − 3ĉ)

14â − 2b̂ − 5ĉ
→ 15(−4nv + nwf)

(nb + 12nv + 3nwf )

t4 = −15(81â + 32b̂ − 20ĉ)

2(14â − 2b̂ − 5ĉ)
→ 15(nb + 2nv − 2nwf )

2(nb + 12nv + 3nwf )
(C.10)

where â, b̂, ĉ are defined in (3.19)-(3.21) of [43]. We have also indicated the result for nv,

nb and nwf free vectors, real bosons, and Weyl fermions (one complex dirac fermion would

give nwf = 2).25 Again, the combination appearing in the denominator is fixed in terms of

the stress tensor two point function, see (6.42) of [43].

24Here we added hats to the parameters e and c in [43] so that they are not confused with other parameters

in the present paper. Note also that [43] uses some of these letters with multiple meanings through their

paper.
25â, b̂, ĉ here should not be confused with the ê, ĉ of the previous paragraph. In particular the two ĉ are

not the same [43].
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Two combinations of these three coefficients are related to the values of a and c defined

through the conformal anomaly26

T µ
µ =

c

16π2
W 2 − a

16π2
E (C.11)

where W is the Weyl tensor and E = RµνδρR
µνδρ −4RµνR

µν +R2 is the Euler density.

c also sets the two point function of the stress tensor. The coefficient a can be expressed

in terms of the three parameters in (C.10) as

a

c
=

(9â − 2b̂ − 10ĉ)

3(14â − 2b̂ − 5ĉ)
→ 2nb + 124nv + 11nwf

6nb + 72nv + 18nwf
(C.12)

This follows from (8.37) in [43]. The values for a free theories were computed

in [47, 48]. From the positivity conditions (2.38) it is possible to get general bounds on

this ratio. We find
31

18
≥ a

c
≥ 1

3
(C.13)

where the the lower bound is saturated by a free theory with only scalar bosons and

the upper bound by a free theory with only vectors. Notice that this bound holds for

any conformal theory while the more restrictive bound (2.40) holds for supersymmetric

theories. We can also add that for a N = 2 supersymmetric theory we can find a similar

bound by using as limiting cases free theories with only vector supermultiplets (a
c = 5

4)

and free theories with hypermultiplets (a
c = 1

2). Therefore 5
4 ≥ a

c ≥ 1
2 . This agrees with

results from [52].

In an N = 1 supersymmetric theory there is a relation between the three parameters

â, b̂, ĉ which is obtained by setting t4 = 0 in (C.10). In this case, the two coefficients

in (C.11) specify completely the three point functions of the stress tensor. In a non-

supersymmetric theory, we have one more parameter beyond the two in (C.11).

Finally, we can repeat this exercise for the correlation function of three currents to

find that the coefficient introduced in (2.43)

ã2 =
3

2

5â − 4b̂

(â + 4b̂)
→ 3

∑

i C(ri)b − C(ri)wf
∑

i C(ri)b + 2C(ri)wf
(C.14)

where â, b̂ are defined in eq. (3.9) of [43] , and are not the same as the ones in the

previous paragraphs. Here ri are the representations of the bosons and Weyl fermions.

And C(r) is defined as trr[T
aT b] = C(r)δab. Again, the combination (â + 4b̂) sets the two

point function of the current. And ã2 vanishes in a supersymmetric theory since there is

only one structure contributing for the supersymmetric case [45] and it vanishes for a free

supersymmetric theory.

One can also take similar limits of the parity odd part of the three point function of

three currents and one obtains the result in (2.44). Finally, starting from the correlation

functions for two stress tensors and a current derived in [54] one can derive the charge

distribution function in (2.45). Both of these results relate the corresponding anomaly to

a charge asymmetry.

26Do not confuse these a and c with the parameters â and ĉ of the previous paragraph.
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D. Energy one point functions in theories with a gravity dual

In this appendix we present the calculation of energy one point functions for states created

by current operators and the stress energy operator.

D.1 One point function of the energy with a current source

We wish to compute the contributions to the energy one point function (2.30) for a state

created by a current operator at strong coupling. The AdS/CFT dictionary says we need

to compute the bulk three point function between two bulk photons and the graviton. The

bulk action (3.18) contains two terms. The first term contributes also to the current two

point function while the second term in (3.18) does not. Thus, the first term contributes

to the part of the energy one point function which is determined by the Ward identity and

the second one to the angular dependent term which is not fixed by the Ward identity. In

principle, the first term could also contribute to the angularly dependent part, but we have

argued, based on the results for N = 4 SYM that it contributes only to the constant part.

Thus in order to compute the coefficient a2 in (2.30) we need to compute the ratio of the

contribution of the second term in (3.18) and the contribution of the first term in (3.18).

Since the graviton is localized in W+ and the photon is localized in the other trans-

verse directions if the state has definite four dimensional momentum, we can approximate

the computation as a flat space computation. In this particular case, this approximation

will be exact, but that will not be the case when we discuss the three graviton vertex.

Thus, we evaluate the vertex expanding the flat space action, but we will insert the AdS

wavefunctions for the external states.

In flat space our coordinates are (x+, x−, x1,2,3). The metric is ds2 = −dx+dx−+dxidxi

(latin indices i and j go from 1 to 3).

We want to collect terms that are of first order in the perturbation h. There are

two such terms, one per factor of gµν in the action. The determinant g does not receive

corrections and
√

g = 1
2 . Our perturbation is of the form h = h++(xi, ni)δ(x+)(dx+)2. We

made explicit the fact that h++ depends on the transverse coordinates and on a unit vector

ni in the transverse space that represents the position of our calorimeter.

Therefore, we want to calculate

S1 = − 1

4g2

∫

dx+dx−d3x

2
2h++F+iF+jgij = − 1

4g2

∫

dx+dx−d3xh++F+iF+jgij (D.1)

Notice that the contraction of F s is restricted to the 3 dimensional transverse space

as the metric element g−− is zero. We can do the x+ integral easily as h++ is localized in

this direction. Also, we will use the fact that the wave function of the photon is localized

in the transverse space (3.15). We represent this fact by writing

F+iF+jgij = α(x+, x−)δ3(xi)ǫiǫjgij = α(x+, x−)δ3(xi) (D.2)

where ǫi represents the (normalized) polarization of the photon. Notice that we choose the

polarization in the transverse directions. Therefore F+i ∼ ∂+Ai. Using these facts and
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performing the integrals we get

S1 = − 1

4g2

∫

dx+dx−d3xh++F+iF+jgij = − 1

4g2
h++(0, ni)

∫

dx−α(0, x−) (D.3)

In fact, h++ evaluated at xi = 0 does not depend on ni, see (3.10) at W i = 0. There-

fore, this term does not contribute to the angular dependence of the correlation function.

Let us now look at the other term in (3.18). We first need to compute the Weyl

tensor. Let us start with the Riemann tensor. This tensor has terms that go as 1
2∂2g and

terms that go as gΓΓ. Since we are in a flat space background only the first type of term

contributes. This yields

R+i+j =
1

2
∂i∂jh++ (D.4)

All other terms are given by symmetry properties ( i.e. R+i+j = −Ri++j = −R+ij+ =

Ri+j+) or vanish. The Weyl tensor also contain terms of the form 1
3gλνRµκ. But,

Rµν = gλρRλµρν −→ R++ = gijR+i+j =
1

2
gij∂i∂jh++ (D.5)

We see there is only one non vanishing term that is proportional to the laplacian inside

the transverse space. There are also terms proportional to the Ricci scalar inside the Weyl

tensor, but we can see that these vanish in our case. The Weyl tensor is, then, given by

C+i+j =
1

2

(

∂i∂j −
1

3
gij∂

k∂k

)

h++ (D.6)

The other components either vanish or are given by symmetry properties. There are

four possible positions for the two plus signs, so we will have four terms in the second term

in (3.18) (we are also using symmetry properties of F+i). That is

S2 =
α

g2M2∗

∫

dx+dx−d3x

2
4C+i+jF

+iF+j

=
α

g2M2∗

∫

dx+dx−d3xF+iF+j

(

∂i∂j −
1

3
gij∂

k∂k

)

h++ (D.7)

Once again we can perform the integrals to obtain

S2 =
α

g2M2∗

(

∂i∂j −
1

3
gij∂

k∂k

)

h++(xi, ni)
∣

∣

xi=0
ǫiǫj

∫

dx−α(0, x−) (D.8)

We are interested in the quotient between the angularly dependent term (D.8) and the

spherically symmetric term (D.3)

− 4α

M2∗

(

∂i∂j − 1
3gij∂

k∂k

)

h++(xi, ni)
∣

∣

xi=0
ǫiǫj

h++(0, ni)
(D.9)

We use the explicit form of the perturbation (3.10) and we get the result

aAdS
2 = −48

α

M2∗
(D.10)

This gives the gravity result for the anisotropic part of the one point function (2.30)

of a state produced by a current.
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D.2 One point function of the energy with a stress tensor source

Now we want to repeat this calculation for the case where we have the stress tensor as a

source. In this case we need to consider 3 graviton interactions. There are 3 operators that

contribute to this vertex. A natural parametrization is given by the action (3.24).

We will do first the calculation in a flat space background. As in the computation

we did above we will get derivatives acting on the perturbation h. When we go to the

AdS background we could get terms involving the background curvature. Such terms are

isotropic and will not contribute to the terms that have maximal angular momentum. But

they do give contributions to the terms that have smaller values of the angular momentum.

The computations we do here give only the leading contribution for t2 and t4 in (2.37). We

start from the action in (3.24) and we expand each term to cubic order. We focus on terms

with highest angular momentum in the transverse dimensions (see We use the fact that

we need one of the metric perturbations to be h++ while the other two only have purely

transverse indices. We find

R = −1

2
h++hij

(1)(∂
+)2hij

(2),

RµνδσRµνδσ = −2∂i∂jh++hik
(1)(∂

+)2hjk
(2), (D.11)

RµνδσRδσργR µν
ργ =−6∂i∂j∂k∂ℓh++hij

(1)(∂
+)2hkℓ

(2)

Notice that expanding the determinant of the metric in the action does not contribute to

the three point function. If we now use that the wave function is going to be of the form

hij
(1)∂

+2hkℓ
(2) = β(x+, x−)δ3(~x)ǫijǫkℓ (D.12)

we can perform the integrals and calculate the quotients of the contribution to the three

point function. After taking the derivatives and evaluating at ~x = 0 we obtain the ratios

t2 = 48
γ1

R2
AdSM2

pl

(D.13)

t4 = 4320
γ2

R4
AdSM4

pl

(D.14)

Due to the issues we discussed above, there are terms contributing to t2 which are of

first order in γ2/(RAdSMpl)
4, coming from the term with six derivatives in the action, which

we neglected compared to the contribution of the four derivative terms. These formulas

are also valid only to first other in the γi.
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